• Photonics Research
  • Vol. 6, Issue 7, 734 (2018)
Hilal Cansizoglu1、†, Cesar Bartolo-Perez1、†, Yang Gao1、*, Ekaterina Ponizovskaya Devine1、2, Soroush Ghandiparsi1, Kazim G. Polat1, Hasina H. Mamtaz1, Toshishige Yamada2、3, Aly F. Elrefaie1、2, Shih-Yuan Wang2, and M. Saif Islam1、4
Author Affiliations
  • 1Electrical and Computer Engineering, University of California—Davis, Davis, California 95618, USA
  • 2W&WSens Devices, Inc., 4546 El Camino, Suite 215, Los Altos, California 94022, USA
  • 3Electrical Engineering, Baskin School of Engineering, University of California, Santa Cruz, California 95064, USA
  • 4e-mail: sislam@ucdavis.edu
  • show less
    DOI: 10.1364/PRJ.6.000734 Cite this Article Set citation alerts
    Hilal Cansizoglu, Cesar Bartolo-Perez, Yang Gao, Ekaterina Ponizovskaya Devine, Soroush Ghandiparsi, Kazim G. Polat, Hasina H. Mamtaz, Toshishige Yamada, Aly F. Elrefaie, Shih-Yuan Wang, M. Saif Islam. Surface-illuminated photon-trapping high-speed Ge-on-Si photodiodes with improved efficiency up to 1700  nm[J]. Photonics Research, 2018, 6(7): 734 Copy Citation Text show less
    References

    [1] O. Vermesan, P. Friess. Internet of Things: Converging Technologies for Smart Environments and Integrated Ecosystems(2013).

    [2] Y. A. Vlasov. Silicon CMOS-integrated nano-photonics for computer and data communications beyond 100G. IEEE Commun. Mag., 50, s67-s72(2012).

    [3] V. Houtsma, D. van Veen, E. Harstead. Recent progress on standardization of next-generation 25, 50, and 100G EPON. J. Lightwave Technol., 35, 1228-1234(2017).

    [4] Z. Li, Y.-M. Jung, N. Simakov, P. Shardlow, A. Heidt, A. Clarkson, S.-U. Alam, D. J. Richardson. Extreme short wavelength operation (1.65–1.7  μm) of silica-based thulium-doped fiber amplifier. Optical Fiber Communication Conference, Tu2C.1(2015).

    [5] S. V. Firstov, S. V. Alyshev, K. E. Riumkin, V. F. Khopin, A. N. Guryanov, M. A. Melkumov, E. M. Dianov. A 23-dB bismuth-doped optical fiber amplifier for a 1700-nm band. Sci. Rep., 6, 28939(2016).

    [6] H. Zhang, Z. Li, N. Kavanagh, J. Zhao, N. Ye, Y. Chen, N. Wheeler, J. Wooler, J. Hayes, S. Sandoghchi. 81  Gb/s WDM transmission at 2  μm over 1.15  km of low-loss hollow core photonic bandgap fiber. European Conference on Optical Communication (ECOC)(2014).

    [7] T. Morioka, Y. Awaji, R. Ryf, P. Winzer, D. Richardson, F. Poletti. Enhancing optical communications with brand new fibers. IEEE Commun. Mag., 50, s31-s42(2012).

    [8] P. Jouguet, S. Kunz-Jacques, A. Leverrier, P. Grangier, E. Diamanti. Experimental demonstration of long-distance continuous-variable quantum key distribution. Nat. Photonics, 7, 378-381(2013).

    [9] R. Sabatini, M. A. Richardson, H. Jia, D. Zammit-Mangion. Airborne laser systems for atmospheric sounding in the near infrared. Proc. SPIE, 8433, 843314(2012).

    [10] L. A. Sordillo, Y. Pu, S. Pratavieira, Y. Budansky, R. R. Alfano. Deep optical imaging of tissue using the second and third near-infrared spectral windows. J. Biomed. Opt., 19, 056004(2014).

    [11] S. Gunapala, B. Levine, D. Ritter, R. Hamm, M. Panish. InGaAs/InP long wavelength quantum well infrared photodetectors. Appl. Phys. Lett., 58, 2024-2026(1991).

    [12] H. Ito, T. Furuta, S. Kodama, T. Ishibashi. InP/InGaAs uni-travelling-carrier photodiode with 310  GHz bandwidth. Electron. Lett., 36, 1809-1810(2000).

    [13] H. Cansizoglu, E. P. Devine, Y. Gao, S. Ghandiparsi, T. Yamada, A. F. Elrefaie, S.-Y. Wang, M. S. Islam. A new paradigm in high-speed and high-efficiency silicon photodiodes for communication—Part I: enhancing photon-material interactions via low-dimensional structures. IEEE Trans. Electron Devices, 65, 372-381(2018).

    [14] H. Cansizoglu, A. F. Elrefaie, C. Bartolo-Perez, T. Yamada, Y. Gao, A. S. Mayet, M. F. Cansizoglu, E. P. Devine, S.-Y. Wang, M. S. Islam. A new paradigm in high-speed and high-efficiency silicon photodiodes for communication—Part II: device and VLSI integration challenges for low-dimensional structures. IEEE Trans. Electron Devices, 65, 382-391(2018).

    [15] J. S. Dunn, D. C. Ahlgren, D. D. Coolbaugh, N. B. Feilchenfeld, G. Freeman, D. R. Greenberg, R. A. Groves, F. J. Guarin, Y. Hammad, A. J. Joseph, L. D. Lanzerotti, S. A. St. Onge, B. A. Orner, J.-S. Rieh, K. J. Stein, S. H. Voldman, P.-C. Wang, M. J. Zierak, S. Subbanna, D. L. Harame, D. A. Herman, B. S. Meyerson. Foundation of RF CMOS and SiGe BiCMOS technologies. IBM J. Res. Dev., 47, 101-138(2003).

    [16] S. Sze. Physics of Semiconductor Devices(1981).

    [17] H. Ye, J. Yu. Germanium epitaxy on silicon. Sci. Technol. Adv. Mater., 15, 024601(2014).

    [18] J. Michel, J. Liu, L. C. Kimerling. High-performance Ge-on-Si photodetectors. Nat. Photonics, 4, 527-534(2010).

    [19] A. Beling, J. C. Campbell. High-speed photodiodes. IEEE J. Sel. Top. Quantum Electron., 20, 57-63(2014).

    [20] A. N. Larsen. Epitaxial growth of Ge and SiGe on Si substrates. Mater. Sci. Semicond. Process., 9, 454-459(2006).

    [21] Z. Huang, J. Oh, J. C. Campbell. Back-side-illuminated high-speed Ge photodetector fabricated on Si substrate using thin SiGe buffer layers. Appl. Phys. Lett., 85, 3286-3288(2004).

    [22] L. Colace, G. Masini, F. Galluzzi, G. Assanto, G. Capellini, L. Di Gaspare, E. Palange, F. Evangelisti. Metal-semiconductor–metal near-infrared light detector based on epitaxial Ge/Si. Appl. Phys. Lett., 72, 3175-3177(1998).

    [23] H.-C. Luan, D. R. Lim, K. K. Lee, K. M. Chen, J. G. Sandland, K. Wada, L. C. Kimerling. High-quality Ge epilayers on Si with low threading-dislocation densities. Appl. Phys. Lett., 75, 2909-2911(1999).

    [24] H.-Y. Yu, J.-H. Park, A. K. Okyay, K. C. Saraswat. Selective-area high-quality germanium growth for monolithic integrated optoelectronics. IEEE Electron Device Lett., 33, 579-581(2012).

    [25] D. Houghton. Strain relaxation kinetics in Si1-xGex/Si heterostructures. J. Appl. Phys., 70, 2136-2151(1991).

    [26] F. LeGoues, B. Meyerson, J. Morar. Anomalous strain relaxation in SiGe thin films and superlattices. Phys. Rev. Lett., 66, 2903-2906(1991).

    [27] O. I. Dosunmu, D. D. Cannon, M. K. Emsley, L. C. Kimerling, M. S. Unlu. High-speed resonant cavity enhanced Ge photodetectors on reflecting Si substrates for 1550-nm operation. IEEE Photon. Technol. Lett., 17, 175-177(2005).

    [28] Y. Gao, H. Cansizoglu, K. G. Polat, S. Ghandiparsi, A. Kaya, H. H. Mamtaz, A. S. Mayet, Y. Wang, X. Zhang, T. Yamada, E. P. Devine, A. F. Elrefaie, S.-Y. Wang, M. S. Islam. Photon-trapping microstructures enable high-speed high-efficiency silicon photodiodes. Nat. Photonics, 11, 301-308(2017).

    [29] Y. Gao, H. Cansizoglu, S. Ghandiparsi, C. Bartolo-Perez, E. P. Devine, T. Yamada, A. F. Elrefaie, S.-Y. Wang, M. S. Islam. High speed surface illuminated Si photodiode using microstructured holes for absorption enhancements at 900–1000  nm wavelength. ACS Photon., 4, 2053-2060(2017).

    [30] S. Peng, G. M. Morris. Resonant scattering from two-dimensional gratings. J. Opt. Soc. Am. A, 13, 993-1005(1996).

    [31] Q. C. Nie, B. K. Chen. Application of ADE-FDTD method in lossy Lorentz media. Advanced Materials Research, 2486-2489(2014).

    [32] H. Wen, E. Bellotti. Rigorous theory of the radiative and gain characteristics of silicon and germanium lasing media. Phys. Rev. B, 91, 035307(2015).

    [33] M. J. Süess, R. Geiger, R. Minamisawa, G. Schiefler, J. Frigerio, D. Chrastina, G. Isella, R. Spolenak, J. Faist, H. Sigg. Analysis of enhanced light emission from highly strained germanium microbridges. Nat. Photonics, 7, 466-472(2013).

    [34] Y. Lin, K. H. Lee, S. Bao, X. Guo, H. Wang, J. Michel, C. S. Tan. High-efficiency normal-incidence vertical p-i-n photodetectors on a germanium-on-insulator platform. Photon. Res., 5, 702-709(2017).

    [35] J. Liu, D. D. Cannon, K. Wada, Y. Ishikawa, S. Jongthammanurak, D. T. Danielson, J. Michel, L. C. Kimerling. Tensile strained Ge p-i-n photodetectors on Si platform for C and L band telecommunications. Appl. Phys. Lett., 87, 011110(2005).

    [36] J. Liu, R. Camacho-Aguilera, J. T. Bessette, X. Sun, X. Wang, Y. Cai, L. C. Kimerling, J. Michel. Ge-on-Si optoelectronics. Thin Solid Films, 520, 3354-3360(2012).

    [37] J. M. Hartmann, A. Abbadie, A. M. Papon, P. Holliger, G. Rolland, T. Billon, J. M. Fédéli, M. Rouvière, L. Vivien, S. Laval. Reduced pressure-chemical vapor deposition of Ge thick layers on Si(001) for 1.3–1.55-μm photodetection. J. Appl. Phys., 95, 5905-5913(2004).

    [38] L. Colace, M. Balbi, G. Masini, G. Assanto, H.-C. Luan, L. C. Kimerling. Ge on Si p-i-n photodiodes operating at 10  Gbit/s. Appl. Phys. Lett., 88, 101111(2006).

    [39] D. Su, S. Kim, J. Joo, G. Kim. 36-GHz high-responsivity Ge photodetectors grown by RPCVD. IEEE Photon. Technol. Lett., 21, 672-674(2009).

    [40] L. Colace, G. Masini, G. Assanto, H.-C. Luan, K. Wada, L. Kimerling. Efficient high-speed near-infrared Ge photodetectors integrated on Si substrates. Appl. Phys. Lett., 76, 1231-1233(2000).

    [41] C. Li, C. Xue, Z. Liu, B. Cheng, C. Li, Q. Wang. High-bandwidth and high-responsivity top-illuminated germanium photodiodes for optical interconnection. IEEE Trans. Electron Devices, 60, 1183-1187(2013).

    [42] Z. Zhou, J. He, R. Wang, C. Li, J. Yu. Normal incidence p-i-n Ge heterojunction photodiodes on Si substrate grown by ultrahigh vacuum chemical vapor deposition. Opt. Commun., 283, 3404-3407(2010).

    [43] K. Rush, S. Draving, J. Kerley. Characterizing high-speed oscilloscopes. IEEE Spectr., 27, 38-39(1990).

    [44] H. Cansizoglu, Y. Gao, S. Ghandiparsi, A. Kaya, C. B. Perez, A. Mayet, E. P. Devine, M. F. Cansizoglu, T. Yamada, A. F. Elrefaie. Improved bandwidth and quantum efficiency in silicon photodiodes using photon-manipulating micro/nanostructures operating in the range of 700–1060  nm. Proc. SPIE, 10349, 103490U(2017).

    [45] B. Moeneclaey, G. Kanakis, J. Verbrugghe, N. Iliadis, W. Soenen, D. Kalavrouziotis, C. Spatharakis, S. Dris, X. Yin, P. Bakopoulos. A 64  Gb/s PAM-4 linear optical receiver. Optical Fiber Communication Conference, M3C.5(2015).

    [46] D. Okamoto, Y. Suzuki, K. Yashiki, Y. Hagihara, M. Tokushima, J. Fujikata, M. Kurihara, J. Tsuchida, T. Nedachi, J. Inasaka. A 25-Gb/s 5 × 5  mm 2 chip-scale silicon-photonic receiver integrated with 28-nm CMOS transimpedance amplifier. J. Lightwave Technol., 34, 2988-2995(2016).

    [47] A. McCarthy, X. Ren, A. Della Frera, N. R. Gemmell, N. J. Krichel, C. Scarcella, A. Ruggeri, A. Tosi, G. S. Buller. Kilometer-range depth imaging at 1550  nm wavelength using an InGaAs/InP single-photon avalanche diode detector. Opt. Express, 21, 22098-22113(2013).

    [48] M. Ren, X. Gu, Y. Liang, W. Kong, E. Wu, G. Wu, H. Zeng. Laser ranging at 1550  nm with 1-GHz sine-wave gated InGaAs/InP APD single-photon detector. Opt. Express, 19, 13497-13502(2011).

    [49] R. H. Hadfield. Single-photon detectors for optical quantum information applications. Nat. Photonics, 3, 696-705(2009).

    CLP Journals

    [1] Meng Guo, Hongbo He, Kui Yi, Shuying Shao, Guohang Hu, Jianda Shao. Optical characteristics of ultrathin amorphous Ge films[J]. Chinese Optics Letters, 2020, 18(10): 103101

    [2] Wei-Da Hu, Qing Li, Xiao-Shuang Chen, Wei Lu. Recent progress on advanced infrared photodetectors[J]. Acta Physica Sinica, 2019, 68(12): 120701-1

    Hilal Cansizoglu, Cesar Bartolo-Perez, Yang Gao, Ekaterina Ponizovskaya Devine, Soroush Ghandiparsi, Kazim G. Polat, Hasina H. Mamtaz, Toshishige Yamada, Aly F. Elrefaie, Shih-Yuan Wang, M. Saif Islam. Surface-illuminated photon-trapping high-speed Ge-on-Si photodiodes with improved efficiency up to 1700  nm[J]. Photonics Research, 2018, 6(7): 734
    Download Citation