• Acta Optica Sinica
  • Vol. 44, Issue 15, 1513031 (2024)
Tengfei Hao1,2,3, Mingjian Li1,2,3, Shiyu Xiao1,2,3, Wei Li1,2,3..., Yitang Dai4 and Ming Li1,2,3,*|Show fewer author(s)
Author Affiliations
  • 1Key Laboratory of Optoelectronic Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 10083, China
  • 2School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • 3Center of Materials Science and Opto-Electronics Engineering, University of Chinese Academy of Sciences, Beijing 100190, China
  • 4State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
  • show less
    DOI: 10.3788/AOS241042 Cite this Article Set citation alerts
    Tengfei Hao, Mingjian Li, Shiyu Xiao, Wei Li, Yitang Dai, Ming Li. Novel Optoelectronic Oscillators (Invited)[J]. Acta Optica Sinica, 2024, 44(15): 1513031 Copy Citation Text show less
    References

    [1] Maleki L. The optoelectronic oscillator[J]. Nature Photonics, 5, 728-730(2011).

    [2] Hao T F, Li W, Zhu N H et al. Perspectives on optoelectronic oscillators[J]. APL Photonics, 8, 020901(2023).

    [3] Hao T F, Liu Y Z, Tang J et al. Recent advances in optoelectronic oscillators[J]. Advanced Photonics, 2, 044001(2020).

    [4] Chembo Y K, Brunner D, Jacquot M et al. Optoelectronic oscillators with time-delayed feedback[J]. Reviews of Modern Physics, 91, 035006(2019).

    [5] Yao X S, Maleki L. Optoelectronic oscillator for photonic systems[J]. IEEE Journal of Quantum Electronics, 32, 1141-1149(1996).

    [6] Yao X S, Maleki L. Optoelectronic microwave oscillator[J]. Journal of the Optical Society of America B, 13, 1725-1735(1996).

    [7] Yao X S, Maleki L. High frequency optical subcarrier generator[J]. Electronics Letters, 30, 1525-1526(1994).

    [8] Huggett G R. Mode-locking of CW lasers by regenerative RF feedback[J]. Applied Physics Letters, 13, 186-187(1968).

    [9] Yao X S, Maleki L, Ji Y et al. Dual-loop opto-electronic oscillator[C], 545-549(1998).

    [10] Jiang Y, Yu J L, Wang Y T et al. An optical domain combined dual-loop optoelectronic oscillator[J]. IEEE Photonics Technology Letters, 19, 807-809(2007).

    [11] Jia S, Yu J L, Wang J et al. A novel optoelectronic oscillator based on wavelength multiplexing[J]. IEEE Photonics Technology Letters, 27, 213-216(2015).

    [12] Yao X S, Maleki L. Multiloop optoelectronic oscillator[J]. IEEE Journal of Quantum Electronics, 36, 79-84(2000).

    [13] Bánky T, Horváth B, Berceli T. Optimum configuration of multiloop optoelectronic oscillators[J]. Journal of the Optical Society of America B, 23, 1371-1380(2006).

    [14] Yao X S, Maleki L. Dual microwave and optical oscillator[J]. Optics Letters, 22, 1867-1869(1997).

    [15] Yao X S, Davis L, Maleki L. Coupled optoelectronic oscillators for generating both RF signal and optical pulses[J]. Journal of Lightwave Technology, 18, 73-78(2000).

    [16] Lasri J, Devgan P, Tang R Y et al. Self-starting optoelectronic oscillator for generating ultra-low-jitter high-rate (10 GHz or higher) optical pulses[J]. Optics Express, 11, 1430-1435(2003).

    [17] Zhou W M, Blasche G. Injection-locked dual opto-electronic oscillator with ultra-low phase noise and ultra-low spurious level[J]. IEEE Transactions on Microwave Theory and Techniques, 53, 929-933(2005).

    [18] Okusaga O, Adles E J, Levy E C et al. Spurious mode reduction in dual injection-locked optoelectronic oscillators[J]. Optics Express, 19, 5839-5854(2011).

    [19] Lee K H, Kim J Y, Choi W Y. Injection-locked hybrid optoelectronic oscillators for single-mode oscillation[J]. IEEE Photonics Technology Letters, 20, 1645-1647(2008).

    [20] Pan S L, Yao J P. A frequency-doubling optoelectronic oscillator using a polarization modulator[J]. IEEE Photonics Technology Letters, 21, 929-931(2009).

    [21] Shin M, Grigoryan V S, Kumar P. Frequency-doubling optoelectronic oscillator for generating high-frequency microwave signals with low phase noise[J]. Electronics Letters, 43, 242-244(2007).

    [22] Li C X, Mao J B, Dai R et al. Frequency-sextupling optoelectronic oscillator using a Mach-Zehnder interferometer and an FBG[J]. IEEE Photonics Technology Letters, 28, 1356-1359(2016).

    [23] Eliyahu D, Liang W, Dale E et al. Resonant widely tunable opto-electronic oscillator[J]. IEEE Photonics Technology Letters, 25, 1535-1538(2013).

    [24] Eliyahu D, Maleki L. Tunable, ultra-low phase noise YIG based opto-electronic oscillator[C], 2185-2187(2003).

    [25] Peng H F, Zhang C, Xie X P et al. Tunable DC-60 GHz RF generation utilizing a dual-loop optoelectronic oscillator based on stimulated Brillouin scattering[J]. Journal of Lightwave Technology, 33, 2707-2715(2015).

    [26] Zeng Z, Zhang Z Y, Zhang L J et al. Stable and finely tunable optoelectronic oscillator based on stimulated Brillouin scattering and an electro-optic frequency shift[J]. Applied Optics, 59, 589-594(2020).

    [27] Matsko A B, Maleki L, Savchenkov A A et al. Whispering gallery mode based optoelectronic microwave oscillator[J]. Journal of Modern Optics, 50, 2523-2542(2003).

    [28] Volyanskiy K, Salzenstein P, Tavernier H et al. Compact optoelectronic microwave oscillators using ultra-high Q whispering gallery mode disk-resonators and phase modulation[J]. Optics Express, 18, 22358-22363(2010).

    [29] Saleh K, Chembo Y K. Phase noise performance comparison between microwaves generated with Kerr optical frequency combs and optoelectronic oscillators[J]. Electronics Letters, 53, 264-266(2017).

    [30] Liu Y Z, Hao T F, Li W et al. Observation of parity-time symmetry in microwave photonics[J]. Light: Science & Applications, 7, 38(2018).

    [31] Zhang J J, Yao J P. Parity-time-symmetric optoelectronic oscillator[J]. Science Advances, 4, eaar6782(2018).

    [32] Zhang J J, Li L Z, Wang G Y et al. Parity-time symmetry in wavelength space within a single spatial resonator[J]. Nature Communications, 11, 3217(2020).

    [33] Ding Q, Wang M G, Zhang J et al. Parity-time symmetry in parameter space of polarization[J]. APL Photonics, 6, 076102(2021).

    [34] Ding H, Cen Q Z, Xu K et al. Observation of parity-time symmetry in time-division multiplexing pulsed optoelectronic oscillators within a single resonator[J]. Photonics Research, 10, 1915-1923(2022).

    [35] Teng C H, Zou X H, Li P X et al. Fine tunable PT-symmetric optoelectronic oscillator based on laser wavelength tuning[J]. IEEE Photonics Technology Letters, 32, 47-50(2020).

    [36] Liu P C, Xie Z W, Lin D D et al. Parity-time symmetric tunable OEO based on dual-wavelength and cascaded PS-FBGs in a single-loop[J]. Optics Express, 29, 35377-35386(2021).

    [37] Yu X Y, Zhang F Z, Wu B Y et al. Frequency-tunable microwave generation with parity-time symmetry period-one laser dynamics[J]. Optics Letters, 48, 1355-1358(2023).

    [38] Zhang J H, Wang Y, Ding Q H. Single-loop tunable PT-symmetric optoelectronic oscillator based on a phase modulator[J]. Applied Optics, 63, 566-574(2024).

    [39] Hao T F, Cen Q Z, Dai Y T et al. Breaking the limitation of mode building time in an optoelectronic oscillator[J]. Nature Communications, 9, 1839(2018).

    [40] Hao T F, Tang J, Li W et al. Tunable Fourier domain mode-locked optoelectronic oscillator using stimulated Brillouin scattering[J]. IEEE Photonics Technology Letters, 30, 1842-1845(2018).

    [41] Hao T F, Tang J, Li W et al. Harmonically Fourier domain mode-locked optoelectronic oscillator[J]. IEEE Photonics Technology Letters, 31, 427-430(2019).

    [42] Hao T F, Tang J, Shi N N et al. Dual-chirp Fourier domain mode-locked optoelectronic oscillator[J]. Optics Letters, 44, 1912-1915(2019).

    [43] Zhang L J, Zeng Z, Zhang Y W et al. Frequency-sweep-range-reconfigurable complementary linearly chirped microwave waveform pair generation by using a Fourier domain mode locking optoelectronic oscillator based on stimulated Brillouin scattering[J]. IEEE Photonics Journal, 12, 5501010(2020).

    [44] Zeng Z, Zhang L J, Zhang Y W et al. Frequency-definable linearly chirped microwave waveform generation by a Fourier domain mode locking optoelectronic oscillator based on stimulated Brillouin scattering[J]. Optics Express, 28, 13861-13870(2020).

    [45] Zhang H, Zhang F Z, Pan S L et al. Photonic generation of linearly chirped microwave waveforms with tunable parameters[J]. IEEE Photonics Technology Letters, 32, 1037-1040(2020).

    [46] Hao P, Lu H, Han R X et al. Fourier domain mode-locked opto-electronic oscillator with a diode-tuned bandpass filter[J]. Optics Express, 28, 23454-23466(2020).

    [47] Li Y N, Hao T F, Li G Z et al. Photonic generation of phase-coded microwave signals based on Fourier domain mode locking[J]. IEEE Photonics Technology Letters, 33, 433-436(2021).

    [48] Liu R R, Wang A L, Du P F et al. Simultaneous generation of ultra-wideband LFM and phase-coded LFM microwave waveforms based on an improved frequency-sweeping OEO[J]. Optics Communications, 459, 124938(2020).

    [49] Li G Z, Hao T F, Li W et al. Bandwidth superposition of linearly chirped microwave waveforms based on a Fourier domain mode-locked optoelectronic oscillator[J]. Optics Express, 29, 36977-36987(2021).

    [50] Chen Y, Zuo P C, Shi T X. Optoelectronic oscillator for arbitrary microwave waveform generation[J]. Journal of Lightwave Technology, 39, 6033-6044(2021).

    [51] Wang Y L, Li X, Zhang J et al. Spurious level and phase noise improved Fourier domain mode-locked optoelectronic oscillator based on a self-injection-locking technique[J]. Optics Express, 29, 7535-7543(2021).

    [52] Zhu R, Xu M, Liu Q H et al. Photonic generation of flexible ultra-wide linearly-chirped microwave waveforms[J]. Optics Express, 29, 43731-43744(2021).

    [53] Wang L, Liu Y F, Chen Y et al. Generation of reconfigurable linearly chirped microwave waveforms based on Fourier domain mode-locked optoelectronic oscillator[J]. Journal of Lightwave Technology, 40, 85-92(2022).

    [54] Wang Y L, Li X, Wo J H et al. Photonic frequency division of broadband microwave signal based on a Fourier domain mode-locked optoelectronic oscillator[J]. Optics & Laser Technology, 147, 107704(2022).

    [55] Hong X, Cheng Y H, Wang B et al. On-chip photonic generation of tunable wideband phase-coded linearly-chirped microwave waveforms[J]. Journal of Lightwave Technology, 41, 6199-6207(2023).

    [56] Gou W L, Wang L, Liu Y F et al. Generation of phase-coded LFM signals based on Fourier domain mode-locked optoelectronic oscillator[J]. Journal of Lightwave Technology, 41, 6142-6148(2023).

    [57] Li L Z, Chen J X, Zhang J J et al. Stepped-frequency microwave waveform generation based on a Fourier domain mode-locked optoelectronic oscillator[J]. IEEE Photonics Technology Letters, 36, 305-308(2024).

    [58] Hao T F, Cen Q Z, Guan S H et al. Optoelectronic parametric oscillator[J]. Light: Science & Applications, 9, 102(2020).

    [59] Ge Z T, Hao T F, Capmany J et al. Broadband random optoelectronic oscillator[J]. Nature Communications, 11, 5724(2020).

    [60] Ge Z T, Xiao Y, Hao T F et al. Tb/s fast random bit generation based on a broadband random optoelectronic oscillator[J]. IEEE Photonics Technology Letters, 33, 1223-1226(2021).

    [61] Ma Y N, Linghu S Y, Chen B H et al. Continuous ultra-wideband signal regeneration in random optoelectronic oscillators through injection locking[J]. Optics Express, 32, 9847-9856(2024).

    [62] Wu R H, Wang Z Y, Wang Z K et al. True random bit generator based on optoelectronic oscillator with randomly distributed feedback[J]. Optics & Laser Technology, 176, 111008(2024).

    [63] Hao T F, Ding H, Li W et al. Dissipative microwave photonic solitons in spontaneous frequency-hopping optoelectronic oscillators[J]. Photonics Research, 10, 1280-1289(2022).

    [64] Yang B, Zhao H Y, Cao Z Z et al. Active mode-locking optoelectronic oscillator[J]. Optics Express, 28, 33220-33227(2020).

    [65] Zeng Z, Zhang L J, Zhang Y W et al. Microwave pulse generation via employing an electric signal modulator to achieve time-domain mode locking in an optoelectronic oscillator[J]. Optics Letters, 46, 2107-2110(2021).

    [66] Wu Y L, Zeng Z, Zhang L J et al. Modeling an actively mode-locked optoelectronic oscillator based on electric amplitude modulation[J]. Optics Express, 29, 23835-23846(2021).

    [67] Wo J H, Zhang J, Wang Y L. Actively mode-locked optoelectronic oscillator for microwave pulse generation[J]. Optics & Laser Technology, 146, 107563(2022).

    [68] Liu P C, Shi S Q, Lu M J et al. Tunable microwave frequency comb generation using a Si3N4-MDR based actively mode-locked OEO[J]. Optics Express, 30, 25380-25389(2022).

    [69] Lin C J, Wang Y L, Wang A L et al. Active mode lock optoelectronic oscillator based on the simulated Brillouin scattering effect[J]. Applied Optics, 61, 7071-7077(2022).

    [70] Li B, Wu R H, Wang Z Y et al. Rational number harmonic mode-locked dual-loop optoelectronic oscillator with low supermode noise and low intermodulation distortions[J]. Optics Express, 30, 30303-30311(2022).

    [71] Zeng Z, Zhang Z Y, Zhang L J et al. Harmonically mode-locked optoelectronic oscillator with ultra-low supermode noise[J]. Optics & Laser Technology, 151, 108036(2022).

    [72] Yang B, Yu J W, Chi H et al. Polarization multiplexed active mode-locking optoelectronic oscillator for frequency tunable dual-band microwave pulse signals generation[J]. Optics Express, 30, 27132-27139(2022).

    [73] Li Y, Wang M G, Gao P F et al. Tunable microwave frequency comb generation based on actively mode-locked OEO[J]. IEEE Photonics Technology Letters, 35, 221-224(2023).

    [74] Xiong F, Zhang J, Wang Y B et al. Dual-band tunable microwave pulse signals generation based on a time domain mode locked optoelectronic oscillator[J]. Optics Communications, 554, 130132(2024).

    [75] Levy E C, Horowitz M. Single-cycle radio-frequency pulse generation by an optoelectronic oscillator[J]. Optics Express, 19, 17599-17608(2011).

    [76] Sherman A, Horowitz M. Ultralow-repetition-rate pulses with ultralow jitter generated by passive mode-locking of an optoelectronic oscillator[J]. Journal of the Optical Society of America B, 30, 2980-2983(2013).

    [77] Levy E C, Horowitz M. Theoretical and experimental study of passive mode-locked optoelectronic oscillators[J]. Journal of the Optical Society of America B, 30, 107-112(2012).

    [78] Tang J, Hao T F, Li W et al. Integrated optoelectronic oscillator[J]. Optics Express, 26, 12257-12265(2018).

    [79] Hao T F, Tang J, Domenech D et al. Toward monolithic integration of OEOs: from systems to chips[J]. Journal of Lightwave Technology, 36, 4565-4582(2018).

    [80] Zhang W F, Yao J P. Silicon photonic integrated optoelectronic oscillator for frequency-tunable microwave generation[J]. Journal of Lightwave Technology, 36, 4655-4663(2018).

    [81] Xuan Z, Du L X, Aflatouni F. Frequency locking of semiconductor lasers to RF oscillators using hybrid-integrated opto-electronic oscillators with dispersive delay lines[J]. Optics Express, 27, 10729-10737(2019).

    [82] Nielsen L, Heck M J R. A computationally efficient integrated coupled opto-electronic oscillator model[J]. Journal of Lightwave Technology, 38, 5430-5439(2020).

    [83] Do P T, Alonso-Ramos C, Le Roux X et al. Wideband tunable microwave signal generation in a silicon-micro-ring-based optoelectronic oscillator[J]. Scientific Reports, 10, 6982(2020).

    [84] Merklein M, Stiller B, Kabakova I V et al. Widely tunable, low phase noise microwave source based on a photonic chip[J]. Optics Letters, 41, 4633-4636(2016).

    [85] Wang L, Xiao X, Xu L et al. On-chip tunable parity-time symmetric optoelectronic oscillator[J]. Advanced Photonics Nexus, 2, 016004(2023).

    [86] Zhang G J, Hao T F, Cen Q Z et al. Hybrid-integrated wideband tunable optoelectronic oscillator[J]. Optics Express, 31, 16929-16938(2023).

    [87] Zhang X P, Zeng H N, Yang J Y et al. Novel RF-source-free reconfigurable microwave photonic radar[J]. Optics Express, 28, 13650-13661(2020).

    [88] Wang L, Hao T F, Li G Y et al. Microwave photonic temperature sensing based on Fourier domain mode-locked OEO and temperature-to-time mapping[J]. Journal of Lightwave Technology, 40, 5322-5327(2022).

    [89] Hao T F, Tang J, Li W et al. Microwave photonics frequency-to-time mapping based on a Fourier domain mode locked optoelectronic oscillator[J]. Optics Express, 26, 33582-33591(2018).

    [90] Hao T F, Tang J, Shi N N et al. Multiple-frequency measurement based on a Fourier domain mode-locked optoelectronic oscillator operating around oscillation threshold[J]. Optics Letters, 44, 3062-3065(2019).

    [91] Cen Q Z, Ding H, Hao T F et al. Large-scale coherent Ising machine based on optoelectronic parametric oscillator[J]. Light: Science & Applications, 11, 333(2022).

    [92] Böhm F, Verschaffelt G, Van der Sande G. A poor man’s coherent Ising machine based on opto-electronic feedback systems for solving optimization problems[J]. Nature Communications, 10, 3538(2019).