• Laser & Optoelectronics Progress
  • Vol. 58, Issue 24, 2410012 (2021)
Ruhai Zhao1、2、* and Fangbin Wang1、2、3
Author Affiliations
  • 1School of Mechanical and Electrical Engineering, Anhui Jianzhu University, Hefei, Anhui 230601, China
  • 2Key Laboratory of Construction Machinery Fault Diagnosis and Early Warning Technology, Anhui Jianzhu University, Hefei, Anhui 230601, China
  • 3Key Laboratory of Intelligent Manufacturing of Construction Machinery, Anhui Jianzhu University, Hefei, Anhui 230601, China
  • show less
    DOI: 10.3788/LOP202158.2410012 Cite this Article Set citation alerts
    Ruhai Zhao, Fangbin Wang. Polarization Thermal Image Segmentation Algorithm of Metal Fatigue Based on Gray Level and Information Entropy Fusion[J]. Laser & Optoelectronics Progress, 2021, 58(24): 2410012 Copy Citation Text show less
    Infrared polarization information images. (a) 0° azimuth image; (b) 60° azimuth image; (c) 120° azimuth image; (d) s0 image; (e) s1 image; (f) s2 image; (g) DOP image; (h) AOP image
    Fig. 1. Infrared polarization information images. (a) 0° azimuth image; (b) 60° azimuth image; (c) 120° azimuth image; (d) s0 image; (e) s1 image; (f) s2 image; (g) DOP image; (h) AOP image
    Process of searching potential target regions. (a) Fusion results of multi azimuth image gray level and information entropy; (b) potential target region images
    Fig. 2. Process of searching potential target regions. (a) Fusion results of multi azimuth image gray level and information entropy; (b) potential target region images
    Simulation segmentation results of 0°, 60°, 120° azimuth images
    Fig. 3. Simulation segmentation results of 0°, 60°, 120° azimuth images
    Flow chart of multi-channel infrared polarized thermal image overall segmentation
    Fig. 4. Flow chart of multi-channel infrared polarized thermal image overall segmentation
    Specimen size
    Fig. 5. Specimen size
    Original images
    Fig. 6. Original images
    Process of multi-channel segmentation with fatigue cycle of 1000 times
    Fig. 7. Process of multi-channel segmentation with fatigue cycle of 1000 times
    Process of multi-channel segmentation with fatigue cycle of 8000 times
    Fig. 8. Process of multi-channel segmentation with fatigue cycle of 8000 times
    Process of multi-channel segmentation with fatigue cycle of 14000 times
    Fig. 9. Process of multi-channel segmentation with fatigue cycle of 14000 times
    Comparison of segmentation results of different algorithms
    Fig. 10. Comparison of segmentation results of different algorithms
    Parameter60°120°
    G̅157150142
    H380.0331.1336.6
    Emax411.2363.4365.2
    ρ-9.8788×10-5-4.2433×10-4-8.7336×10-4
    Table 1. Some parameters and calculation results of potential target region at fatigue cycle of 1000 times
    Parameter60°120°
    G̅158147138
    H406.8384.5382.5
    Emax436.4411.6406.5
    ρ-2.3927×10-4-2.6528×10-4-6.1364×10-4
    Table 2. Some parameters and calculation results of potential target region at fatigue cycle of 8000 times
    Parameter60°120°
    G̅154144136
    H430.8423.9400.4
    Emax433.4447.7422.8
    ρ-6.5729×10-5-1.7110×10-4-5.6997×10-4
    Table 3. Some parameters and calculation results of potential target region at fatigue cycle 14000
    Algorithm1000 times8000 times14000 times
    FCM13.0923.1731.85
    OTSU14.8231.5736.07
    MEM38.0630.1436.29
    Proposed algorithm40.9446.4748.82
    Table 4. GLC of different algorithms unit: %
    Algorithm1000 times8000 times14000 times
    FCM96.6995.6594.83
    OTSU96.3494.1793.66
    MEM63.5193.5993.66
    Proposed algorithm25.173.486.31
    Table 5. δR of different algorithms unit: %
    Ruhai Zhao, Fangbin Wang. Polarization Thermal Image Segmentation Algorithm of Metal Fatigue Based on Gray Level and Information Entropy Fusion[J]. Laser & Optoelectronics Progress, 2021, 58(24): 2410012
    Download Citation