• Chinese Journal of Lasers
  • Vol. 45, Issue 2, 207009 (2018)
Zhang Lu1、*, Zhao Chunhui1, Kang Senbai1, Zhao Hong1, Zhang Chunwei1, and Yuan Li2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/CJL201845.0207009 Cite this Article Set citation alerts
    Zhang Lu, Zhao Chunhui, Kang Senbai, Zhao Hong, Zhang Chunwei, Yuan Li. Progress on Methods of Quantitative Phase Measurement and Retrieval for Biological Cells[J]. Chinese Journal of Lasers, 2018, 45(2): 207009 Copy Citation Text show less
    References

    [1] Zernike F. Phase contrast, a new method for the microscopic observation of transparent objects part II[J]. Physica, 9, 974-980(1942). http://www.sciencedirect.com/science/article/pii/S0031891442800798

    [2] Zernike F. Phase contrast, a new method for the microscopic observation of transparent objects[J]. Physica, 9, 686-698(1942). http://www.sciencedirect.com/science/article/pii/S0031891442800798

    [3] Munoz V HF, Ortiz BL, Toto-Arellano NI, et al. Single-shot phase shifting interferometry for microscopic measurements of non-birefringent transmissive phase samples[C]//Emerging Challenges for Experimental Mechanics in Energy and Environmental Applications, Proceedings of the 5th International Symposium on Experimental Mechanics and 9th Symposium on Optics in Industry (ISEM-SOI), 2015. Springer International Publishing, 2017: 221-225.

    [4] Lechuga LG, Toto-Arellano N I, Munoz V H F, et al. Phase shifting interferometry using a coupled cyclic path interferometers[C]//Emerging Challenges for Experimental Mechanics in Energy and Environmental Applications, Proceedings of the 5th International Symposium on Experimental Mechanics and 9th Symposium on Optics in Industry (ISEM-SOI), 2015. Springer International Publishing, 2017: 65-69.

    [5] Toto-Arellano N I. 4D measurements of biological and synthetic structures using a dynamic interferometer[J]. Journal of Modern Optics, 1-10(2017). http://www.tandfonline.com/doi/abs/10.1080/09500340.2017.1300697

    [6] Cintora P, Arikkath J, Kandel M et al. Cell density modulates intracellular mass transport in neural networks[J]. Cytometry Part A, 91, 503-509(2017). http://onlinelibrary.wiley.com/doi/10.1002/cyto.a.23111/pdf

    [7] Kandel M E, Fernandes D, Taylor A M et al. Three-dimensional intracellular transport in neuron bodies and neurites investigated by label-free dispersion-relation phase spectroscopy[J]. Cytometry Part A, 91, 519-526(2017). http://europepmc.org/abstract/MED/28295966

    [8] Li S S. Study and system optimization of simultaneous phase-shifting interferometer for measurement of the height of living cells[D]. Beijing: Beijing Institute of Technology(2015).

    [9] Wang M. Height measurement of living cells based on multi-phase interference microscopy[D]. Beijing: Beijing Institute of Technology(2011).

    [10] Jin D, Sung Y, Lue N et al. Large population cell characterization using quantitative phase cytometer[J]. Cytometry Part, A, 91, 450-459(2017). http://www.ncbi.nlm.nih.gov/pubmed/28444998

    [11] Guo P, Huang J, Moses M A. Characterization of dormant and active human cancer cells by quantitative phase imaging[J]. Cytometry Part A, 91, 424-432(2017). http://onlinelibrary.wiley.com/doi/10.1002/cyto.a.23083/pdf

    [12] Roitshtain D, Wolbromsky L, Bal E et al. Quantitative phase microscopy spatial signatures of cancer cells[J]. Cytometry Part A, 91, 482-493(2017). http://onlinelibrary.wiley.com/doi/10.1002/cyto.a.23100/full

    [13] Janicke B, Kårsnäs A, Egelberg P et al. Label-free high temporal resolution assessment of cell proliferation using digital holographic microscopy[J]. Cytometry Part A, 91, 460-469(2017). http://www.ncbi.nlm.nih.gov/pubmed/28437571

    [14] Luther E, Mendes L P, Pan J et al. Applications of label-free, quantitative phase holographic imaging cytometry to the development of multi-specific nanoscale pharmaceutical formulations[J]. Cytometry Part A, 91, 412-423(2017). http://europepmc.org/abstract/MED/28371272

    [15] Kastl L, Isbach M, Dirksen D et al. Quantitative phase imaging for cell culture quality control[J]. Cytometry Part A, 91, 470-481(2017). http://europepmc.org/abstract/MED/28264140

    [16] Yang S A, Yoon J, Kim K et al. Measurements of morphological and biophysical alterations in individual neuron cells associated with early neurotoxic effects in Parkinson's disease[J]. Cytometry Part A, 91, 510-518(2017). http://www.ncbi.nlm.nih.gov/pubmed/28426150

    [17] Zhang Y Z. Phase-contrast imaging in digital holographic microscopy for biological samples[D]. Beijing: Beijing University of Technology(2012).

    [18] Cui H K. Phase aberration compensation in digital holographic microscopy for biological cells[D]. Beijing: Beijing University of Technology(2011).

    [19] Pan F, Xiao W, Liu S. Digital holographic microscopy for long-term quantitative phase-contrast imaging of living cells[J]. Chinese Journal of Lasers, 38, 0509001(2011).

    [20] Ma L H, Wang H, Jin H Z et al. Experimental study on quantitative phase imaging by digital holographic microscopy[J]. Chinese Journal of Lasers, 39, 0309002(2012).

    [21] Darzynkiewicz Z, Bedner E, Li X et al. Laser-scanning cytometry: A new instrumentation with many applications[J]. Experimental Cell Research, 249, 1-12(1999). http://www.sciencedirect.com/science/article/pii/S0014482799944774

    [22] Pozarowski P, Holden E, Darzynkiewicz Z[M]. Laser scanning cytometry: principles and applications——an update, 187-212(2012).

    [23] Harnett M M. Laser scanning cytometry: understanding the immune system in situ[J]. Nature Reviews Immunology, 7, 897-904(2007). http://www.nature.com/nri/journal/v7/n11/abs/nri2188.html

    [24] Henriksen M. Quantitative imaging cytometry: instrumentation of choice for automated cellular and tissue analysis[J]. Nature Methods, 7, 1449-1450(2010). http://www.nature.com/nmeth/journal/v7/n4/full/nmeth.f.302.html

    [25] Hutcheson J A, Khan F Z, Powless A J et al. A light sheet confocal microscope for image cytometry with a variable linear slit detector[C]. SPIE Bios, 9720, 97200U(2016).

    [26] Oheim M. Advances and challenges in high-throughput microscopy for live-cell subcellular imaging[J]. Expert Opinion on Drug Discovery, 6, 1299-1315(2011). http://www.ncbi.nlm.nih.gov/pubmed/22647068

    [27] Cheung M C, Mckenna B, Wang S S et al. Image-based cell-resolved screening assays in flow[J]. Cytometry Part A, 87, 541-548(2015). http://www.ncbi.nlm.nih.gov/pubmed/25515084

    [28] Mckenna B K, Evans J G, Cheung M C et al. A parallel microfluidic flow cytometer for high content screening[J]. Nature Methods, 8, 401-403(2011). http://europepmc.org/articles/PMC3084896

    [29] Basiji D A, Ortyn W E, Liang L et al. Cellular image analysis and imaging by flow cytometry[J]. Clinics in Laboratory Medicine, 27, 653-670(2007). http://www.sciencedirect.com/science/article/pii/S0272271207000534

    [30] McGrath K E, Bushnell T P, Palis J. Multispectral imaging of hematopoietic cells: where flow meets morphology[J]. Journal of Immunological Methods, 336, 91-97(2008). http://europepmc.org/abstract/MED/18539294

    [31] Vorobjev I A, Barteneva N S. Imaging flow cytometry methods and protocols[M]. New York: Springer Science+Business Media(2016).

    [32] Schmid L, Weitz D A, Franke T. Sorting drops and cells with acoustics: acoustic microfluidic fluorescence-activated cell sorter[J]. Lab on A Chip, 14, 3710-3718(2014). http://www.ncbi.nlm.nih.gov/pubmed/25031157

    [33] Ren L Q, Chen Y C, Li P et al. A high-throughput acoustic cell sorter[J]. Lab on A Chip, 15, 3870-3879(2015). http://www.ncbi.nlm.nih.gov/pubmed/26289231

    [34] Shields IV C W, Reyes C D, López G P. Microfluidic cell sorting: a review of the advances in the separation of cells from debulking to rare cell isolation[J]. Lab on A Chip, 15, 1230-1249(2015). http://www.ncbi.nlm.nih.gov/pubmed/25598308

    [35] Schonbrun E, Gorthi S S, Schaak D. Microfabricated multiple field of view imaging flow cytometry[J]. Lab on A Chip, 12, 268-273(2012). http://www.ncbi.nlm.nih.gov/pubmed/22037643

    [36] Goda K, Tsia K K, Jalali B. Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena[J]. Nature, 458, 1145-1149(2009). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=VIRT05000008000005000197000001&idtype=cvips&gifs=Yes

    [37] Goda K, Motafakker-Fard A, Tsia K K et al. Serial time encoded amplified microscopy (STEAM) for high-throughput detection of rare cells[C]. Photonics Society Winter Topicals Meeting Series, IEEE, 64-65(2010).

    [38] Goda K, Ayazi A, Gossett D R et al. High-throughput single-microparticle imaging flow analyzer[J]. Proceedings of the National Academy of Sciences of the United States of America, 109, 11630-11635(2012). http://www.ncbi.nlm.nih.gov/pubmed/22753513

    [39] Chen C L, Mahjoubfar A, Tai L C et al. Deep learning in label-free cell classification[J]. Scientific Reports, 6, 21471(2016). http://www.ncbi.nlm.nih.gov/pubmed/26975219

    [40] Jiang Y, Lei C, Yasumoto A et al. Label-free detection of aggregated platelets in blood by machine-learning-aided optofluidic time-stretch microscopy[J]. Lab on A Chip, 17, 2426-2434(2017). http://europepmc.org/abstract/MED/28627575

    [41] Huang E, Ma Q, Liu Z W. Ultrafast imaging using spectral resonance modulation[J]. Scientific Reports, 6, 25240(2016). http://europepmc.org/articles/PMC4848519/

    [42] Goda K, Jalali B. Dispersive Fourier transformation for fast continuous single-shot measurements[J]. Nature Photonics, 7, 102-112(2013). http://www.nature.com/nphoton/journal/v7/n2/abs/nphoton.2012.359.html

    [43] LeCun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 521, 436-444(2015).

    [44] Guo B, Lei C, Kobayashi H et al. High-throughput, label-free, single-cell, microalgal lipid screening by machine-learning-equipped optofluidic time-stretch quantitative phase microscopy[J]. Cytometry Part A, 91, 494-502(2017). http://www.ncbi.nlm.nih.gov/pubmed/28399328

    [45] Isikman S O, Bishara W, Ozcan A. Partially coherent lens-free tomographic microscopy[J]. Applied Optics, 50, H253-H264(2011). http://www.ncbi.nlm.nih.gov/pubmed/22193016

    [46] Mudanyali O, Tseng D, Oh C et al. Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications[J]. Lab on A Chip, 10, 1417-1428(2010). http://pubmedcentralcanada.ca/pmcc/articles/PMC2902728/

    [47] Xue L. Optical microscopy imaging and its application in bio-sample display and measurement[D]. Nanjing: Nanjing University of Science and Technology(2013).

    [48] Chen Y Z, Ji Y, Xie M et al. Phase microscopy imaging method based on common-path without micro-objective[J]. Laser & Optoelectronics Progress, 52, 121702(2015).

    [49] Allier C, Morel S, Vincent R et al. Imaging of dense cell cultures by multiwavelength lens-free video microscopy[J]. Cytometry Part A, 91, 433-442(2017). http://onlinelibrary.wiley.com/doi/10.1002/cyto.a.23079/abstract

    [50] Merola F, Barroso Á, Miccio L et al. Biolens behavior of RBCs under optically-induced mechanical stress[J]. Cytometry Part A, 91, 527-533(2017). http://onlinelibrary.wiley.com/doi/10.1002/cyto.a.23085/full

    [51] Vargas J, Quiroga J A. Sorzano C O S, et al. Two-step demodulation based on the Gram-Schmidt orthonormalization method[J]. Optics Letters, 37, 443-445(2012).

    [52] Niu W H, Zhong L Y, Sun P et al. An improved two-step phase-shifting algorithm based on Gram-Schmidt orthonormalization[J]. Chinese Journal of Lasers, 42, 0608002(2015).

    [53] Cui J H, Wang H L, Lü X X et al. The application of an improved phase unwrapping method in measurement the phase of cells[J]. Laser Journal, 36, 62-65(2015).

    [54] Bhaduri B, Popescu G. Derivative method for phase retrieval in off-axis quantitative phase imaging[J]. Optics Letters, 37, 1868-1870(2012). http://www.opticsinfobase.org/abstract.cfm?URI=ol-37-11-1868

    [55] Xu Y Y, Wang Y W, Jin W F et al. A new method of phase derivative extracting for off-axis quantitative phase imaging[J]. Optics Communications, 305, 13-16(2013). http://www.sciencedirect.com/science/article/pii/S0030401813004689

    [56] Alanazi H, Canul A J, Garman A et al. Robust microbial cell segmentation by optical-phase thresholding with minimal processing requirements[J]. Cytometry Part A, 91, 443-449(2017). http://www.ncbi.nlm.nih.gov/pubmed/28371011

    [57] Popescu G, Deflores L P, Vaughan J C et al. Fourier phase microscopy for investigation of biological structures and dynamics[J]. Optics Letters, 29, 2503-2505(2004). http://www.opticsinfobase.org/abstract.cfm?id=81608

    [58] Popescu G, Badizadegan K, Feld M S et al. Quantitative phase imaging of live cells using fast Fourier phase microscopy[J]. Applied Optics, 46, 1836-1842(2007). http://www.ncbi.nlm.nih.gov/pubmed/17356628

    [59] Wang Z, Millet L, Mir M et al. Spatial light interference microscopy (SLIM)[J]. Optics Express, 19, 1016-1026(2011). http://www.opticsinfobase.org/abstract.cfm?uri=oe-19-2-1016

    [60] Bhaduri B, Wickland D, Wang R et al. Cardiac myocyte imaging using real-time spatial light interference microscopy (SLIM)[J]. PloS One, 8, e56930(2013).

    [61] Tan H N, Popescu G. Spatial light interference microscopy (SLIM) using twisted-nematic liquid-crystal modulation[J]. Biomedical Optics Express, 4, 1571-1583(2013). http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3771828/?report=classic

    [62] Bhaduri B, Tangella K, Popescu G. Fourier phase microscopy with white light[J]. Biomedical Optics Express, 4, 1434-1441(2013). http://europepmc.org/articles/PMC3756570

    [63] Wax A, Ehlers M D, Shaked N T et al. Parallel on-axis holographic phase microscopy of biological cells and unicellular microorganism dynamics[J]. Applied Optics, 49, 2872-2878(2010). http://europepmc.org/abstract/MED/20490249

    [64] Choi W, Fang-Yen C, Badizadegan K et al. Tomographic phase microscopy[J]. Nature methods, 4, 717-719(2007).

    [65] Marquet P, Rappaz B, Magistretti P J et al. Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy[J]. Optics Letters, 30, 468-470(2005). http://www.ncbi.nlm.nih.gov/pubmed/15789705/

    [66] Popescu G, Ikeda T, Dasari R R et al. Diffraction phase microscopy for quantifying cell structure and dynamics[J]. Optics Letters, 31, 775-778(2006). http://europepmc.org/abstract/med/16544620

    [67] Pham H V, Bhaduri B, Tangella K et al. Real time blood testing using quantitative phase imaging[J]. PloS One, 8, e55676(2013).

    [68] Bhaduri B, Pham H, Mir M et al. Diffraction phase microscopy with white light[J]. Optics Letters, 37, 1094-1096(2012). http://www.ncbi.nlm.nih.gov/pubmed/22446236

    [69] Pham H V, Edwards C, Goddard L L et al. Fast phase reconstruction in white light diffraction phase microscopy[J]. Applied Optics, 52, A97-A101(2013). http://www.opticsinfobase.org/abstract.cfm?uri=ao-52-1-A97

    [70] Xu Y Y. Fast phase retrieval method and imaging technology of cells based on interference microscopy[D]. Zhenjiang: Jiangsu University(2017).

    [71] Ikeda T, Popescu G, Dasari R R et al. Hilbert phase microscopy for investigating fast dynamics in transparent systems[J]. Optics letters, 30, 1165-1167(2005). http://www.opticsinfobase.org/ol/abstract.cfm?id=83779

    [72] Kemper B, Carl D, Schnekenburger J et al. Investigation of living pancreas tumor cells by digital holographic microscopy[J]. Journal of Biomedical Optics, 11, 034005(2006). http://www.ncbi.nlm.nih.gov/pubmed/16822055

    [73] Kemper B, Vollmer A, Rommel C E et al. Simplified approach for quantitative digital holographic phase contrast imaging of living cells[J]. Journal of Biomedical Optics, 16, 026014(2011). http://labs.europepmc.org/abstract/MED/21361698

    [74] Chalut K J, Brown W J, Wax A. Quantitative phase microscopy with asynchronous digital holography[J]. Optics Express, 15, 3047-3052(2007). http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=4453094

    [75] Shaked N T, Rinehart M T, Wax A. Dual-interference-channel quantitative-phase microscopy of live cell dynamics[J]. Optics Letters, 34, 767-769(2009). http://www.ncbi.nlm.nih.gov/pubmed/19282926

    [76] Gao P, Yao B, Harder I et al. Parallel two-step phase-shifting digital holograph microscopy based on a grating pair[J]. Journal of the Optical Society of America A Optics Image Science & Vision, 28, 434-440(2011). http://europepmc.org/abstract/med/21383826

    [77] Gao P, Yao B L, Min J et al. Parallel two-step phase-shifting point-diffraction interferometry for microscopy based on a pair of cube beamsplitters[J]. Optics Express, 19, 1930-1935(2011). http://www.ncbi.nlm.nih.gov/pubmed/21369008

    [78] Liu J, Tian A L, Liu B C et al. A phase extraction algorithm in wavelength tuning interferometry[J]. Acta Optica Sinica, 34, 0312001(2014).

    [79] Shaked N T, Zhu Y, Rinehart M T et al. Two-step-only phase-shifting interferometry with optimized detector bandwidth for microscopy of live cells[J]. Optics Express, 17, 15585-15591(2009). http://www.opticsinfobase.org/abstract.cfm?uri=oe-17-18-15585

    [80] Ina H, Takeda M, Kobayashi S. Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry[J]. Review of Scientific Instruments, 72, 156-160(2015). http://www.opticsinfobase.org/abstract.cfm?uri=josa-72-1-156

    [81] Ding H, Berl E, Wang Z et al. Fourier transform light scattering of biological structure and dynamics[J]. IEEE Journal of Selected Topics in Quantum Electronics, 16, 909-918(2010). http://ieeexplore.ieee.org/document/5443519/

    Zhang Lu, Zhao Chunhui, Kang Senbai, Zhao Hong, Zhang Chunwei, Yuan Li. Progress on Methods of Quantitative Phase Measurement and Retrieval for Biological Cells[J]. Chinese Journal of Lasers, 2018, 45(2): 207009
    Download Citation