• Photonic Sensors
  • Vol. 11, Issue 1, 45 (2021)
Wei LUO1、2, Ye CHEN2、*, and Fei XU2
Author Affiliations
  • 1School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
  • 2National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
  • show less
    DOI: 10.1007/s13320-021-0614-9 Cite this Article
    Wei LUO, Ye CHEN, Fei XU. Recent Progress in Microfiber-Optic Sensors[J]. Photonic Sensors, 2021, 11(1): 45 Copy Citation Text show less
    References

    [1] C. W. Hansell, “Picture transmission,” U.S. Patent 1,751,584, Mar. 25, 1930.

    [2] A. C. S. Van Heel, “A new method of transporting optical images without aberrations,” Nature, 1954, 173(4392): 39.

    [3] H. H. Hopkins and N. S. Kapany, “A flexible fibrescope, using static scanning,” Nature, 1954, 173(4392): 39–41.

    [4] E. Udd and W. B. Spillman, Fiber optic sensors: an introduction for engineers and scientists. Hoboken: John Wiley & Sons, Inc., 2011.

    [5] K. C. Kao and G. A. Hockham, “Dielectric-fibre surface waveguides for optical frequencies,” Proceedings of the Institution of Electrical Engineers, 1966, 113(7): 1151–1158.

    [6] F. P. Kapron, D. B. Keck, and R. D. Maurer, “Radiation losses in glass optical waveguides,” Applied Physics Letters, 1970, 17(10): 423–425.

    [7] R. Bergh, H. Lefevre, and H. Shaw, “An overview of fiber-optic gyroscopes,” Journal of Lightwave Technology, 1984, 2(2): 91–107.

    [8] J. A. Bucaro, H. D. Dardy, and E. F. Carome, “Fiber-optic hydrophone,” The Journal of the Acoustical Society of America, 1977, 62(5): 1302–1304.

    [9] T. Yoshino, K. Kurosawa, K. Itoh, and T. Ose, “Fiber-optic Fabry-Perot interferometer and its sensor applications,” IEEE Transactions on Microwave Theory and Techniques, 1982, 30(10): 1612–1621.

    [10] A. D. Kersey, M. A. Davis, H. J. Patrick, M. Leblanc, K. P. Koo, C. G. Askins, et al., “Fiber grating sensors,” Journal of Lightwave Technology, 1997, 15(8): 1442–1463.

    [11] B. Lee, “Review of the present status of optical fiber sensors,” Optical Fiber Technology, 2003, 9(2): 57–79.

    [12] M. F. S. Ferreira, E. Castro-Camus, D. J. Ottaway, J. M. López-Higuera, X. Feng, W. Jin, et al., “Roadmap on optical sensors,” Journal of Optics, 2017, 19(8): 083001.

    [13] L. Zhang, Y. Tang, and L. Tong, “Micro-/nanofiber optics: Merging photonics and material science on nanoscale for advanced sensing technology,” Iscience, 2020, 23(1): 100810.

    [14] G. Brambilla, F. Xu, P. Horak, Y. Jung, F. Koizumi, N. P. Sessions, E. Koukharenko, et al., “Optical fiber nanowires and microwires: Fabrication and applications,” Advances in Optics and Photonics, 2009, 1(1): 107–161.

    [15] R. Ismaeel, T. Lee, M. Ding, M. Belal, and G. Brambilla, “Optical microfiber passive components,” Laser & Photonics Reviews, 2013, 7(3): 350–384.

    [16] L. Tong, “Micro/nanofibre optical sensors: Challenges and prospects,” Sensors, 2018, 18(3): 903.

    [17] L. Tong, F. Zi, X. Guo, and J. Lou, “Optical microfibers and nanofibers: A tutorial,” Optics Communications, 2012, 285(23): 4641–4647.

    [18] L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, et al., “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature, 2003, 426(6968): 816–819.

    [19] L. Tong, J. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Optics Express, 2004, 12(6): 1025–1035.

    [20] J. Lou, L. Tong, and Z. Ye, “Modeling of silica nanowires for optical sensing,” Optics Express, 2005, 13(6): 2135–2140.

    [21] J. L. Kou, M. Ding, J. Feng, Y. Q. Lu, F. Xu, and G. Brambilla, “Microfiber-based Bragg gratings for sensing applications: a review,” Sensors, 2012, 12(7): 8861–8876.

    [22] S. C. Yan and F. Xu, “A review on optical microfibers in fluidic applications,” Journal of Micromechanics and Microengineering, 2017, 27(9): 093001.

    [23] J. C. Knight, G. Cheung, F. Jacques, and T. A. Birks, “Phase-matched excitation of whispering-gallerymode resonances by a fiber taper,” Optics Letters, 1997, 22(15): 1129–1131.

    [24] K. Huang, S. Yang, and L. Tong, “Modeling of evanescent coupling between two parallel optical nanowires,” Applied Optics, 2007, 46(9): 1429–1434.

    [25] F. Le Kien, V. I. Balykin, and K. Hakuta, “Atom trap and waveguide using a two-color evanescent light field around a subwavelength-diameter optical fiber,” Physical Review A, 2004, 70(6): 063403.

    [26] G. S. Murugan, G. Brambilla, J. S. Wilkinson, and D. J. Richardson, “Optical propulsion of individual and clustered microspheres along sub-micron optical wires,” Japanese Journal of Applied Physics, 2008, 47(8S1): 6716–6718.

    [27] J. L-gsgaard, “Theory of surface second-harmonic generation in silica nanowires,” Journal of the Optical Society of America B, 2010, 27(7): 1317–1324.

    [28] M. A. Gouveia, T. Lee, R. Ismaeel, M. Ding, N. G. R. Broderick, C. M. B. Cordeiro, et al., “Second harmonic generation and enhancement in microfibers and loop resonators,” Applied Physics Letters, 2013, 102(20): 201120.

    [29] A. Coillet and P. Grelu, “Third-harmonic generation in optical microfibers: From silica experiments to highly nonlinear glass prospects,” Optics Communications, 2012, 285(16): 3493–3497.

    [30] M. I. M. A. Khudus, T. Lee, F. De Lucia, C. Corbari, P. Sazio, P. Horak, et al., “All-fiber fourth and fifth harmonic generation from a single source,” Optics Express, 2016, 24(19): 21777–21793.

    [31] Y. Wang, T. Lee, F. De Lucia, M. I. M. Abdul Khudus, P. J. A. Sazio, M. Beresna, et al., “All-fiber sixth-harmonic generation of deep UV,” Optics Letters, 2017, 42(22): 4671–4674.

    [32] Y. H. Li, Y. Y. Zhao, and L. J. Wang, “Demonstration of almost octave-spanning cascaded four-wave mixing in optical microfibers,” Optics Letters, 2012, 37(16): 3441–3443.

    [33] S. Tang, Z. Wu, F. Xu, and Y. Lu, “Simulation of optical microfiber strain sensors based on four-wave mixing,” IEEE Sensors Journal, 2016, 16(9): 3068–3074.

    [34] S. G. Leon-Saval, T. A. Birks, W. J. Wadsworth, P. S. J. Russell, and M. W. Mason, “Supercontinuum generation in submicron fibre waveguides,” Optics Express, 2004, 12(13): 2864–2869.

    [35] F. Le Kien, S. D. Gupta, K. P. Nayak, and K. Hakuta, “Nanofiber-mediated radiative transfer between two distant atoms,” Physical Review A, 2005, 72(6): 063815.

    [36] K. P. Nayak, M. Sadgrove, R. Yalla, F. L. Kien, and K. Hakuta, “Nanofiber quantum photonics,” Journal of Optics, 2018, 20(7): 073001.

    [37] G. Y. Chen, D. G. Lancaster, and T. M. Monro, “Optical microfiber technology for current, temperature, acceleration, acoustic, humidity and ultraviolet light sensing,” Sensors, 2018, 18(1): 72.

    [38] J. H. Chen, D. R. Li, and F. Xu, “Optical microfiber sensors: Sensing mechanisms, and recent advances,” Journal of Lightwave Technology, 2019, 37(11): 2577–2589.

    [39] B. Guan and Y. Huang, “Interface sensitized optical microfiber biosensors,” Journal of Lightwave Technology, 2019, 37(11): 2616–2622.

    [40] W. Talataisong, R. Ismaeel, and G. Brambilla, “A review of microfiber-based temperature sensors,” Sensors, 2018, 18(2): 461.

    [41] P. Wang, L. Bo, Y. Semenova, G. Farrell, and G. Brambilla, “Optical microfibre based photonic components and their applications in label-free biosensing,” Biosensors, 2015, 5(3): 471–499.

    [42] Y. Wu, B. Yao, C. Yu, and Y. Rao, “Optical graphene gas sensors based on microfibers: a review,” Sensors, 2018, 18(4): 941.

    [43] D. I. Yeom, E. C. M-gi, M. R. E. Lamont, M. A. F. Roelens, L. Fu, and B. J. Eggleton, “Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires,” Optics Letters, 2008, 33(7): 660–662.

    [44] G. Brambilla, F. Koizumi, X. Feng, and D. J. Richardson, “Compound-glass optical nanowires,” Electronics Letters, 2005, 41(7): 400–402.

    [45] O. Akta- and M. Bay-nd-r, “Tapered nanoscale chalcogenide fibers directly drawn from bulk glasses as optical couplers for high-index resonators,” Applied Optics, 2017, 56(3): 385–390.

    [46] S. A. Harfenist, S. D. Cambron, E. W. Nelson, S. M. Berry, A. W. Isham, M. M. Crain, et al., “Direct drawing of suspended filamentary micro- and nanostructures from liquid polymers,” Nano Letters, 2004, 4(10): 1931–1937.

    [47] X. Xing, Y. Wang, and B. Li, “Nanofiber drawing and nanodevice assembly in poly(trimethylene terephthalate),” Optics Express, 2008, 16(14): 10815–10822.

    [48] F. Gu, H. Yu, P. Wang, Z. Yang, and L. Tong, “Light-emitting polymer single nanofibers via waveguiding excitation,” ACS Nano, 2010, 4(9): 5332–5338.

    [49] P. Wang, Y. Wang, and L. Tong, “Functionalized polymer nanofibers: A versatile platform for manipulating light at the nanoscale,” Light: Science & Applications, 2013, 2(10): e102.

    [50] L. Persano, A. Camposeo, and D. Pisignano, “Active polymer nanofibers for photonics, electronics, energy generation and micromechanics,” Progress in Polymer Science, 2015, 43: 48–95.

    [51] G. Brambilla, V. Finazzi, and D. J. Richardson, “Ultra-low-loss optical fiber nanotapers,” Optics Express, 2004, 12(10): 2258–2263.

    [52] M. Sumetsky, Y. Dulashko, and A. Hale, “Fabrication and study of bent and coiled free silica nanowires: Self-coupling microloop optical interferometer,” Optics Express, 2004, 12(15): 3521–3531.

    [53] E. J. Zhang, W. D. Sacher, and J. K. S. Poon, “Hydrofluoric acid flow etching of low-loss subwavelength-diameter biconical fiber tapers,” Optics Express, 2010, 18(21): 22593–22598.

    [54] L. Tong, L. Hu, J. Zhang, J. Qiu, Q. Yang, J. Lou, et al., “Photonic nanowires directly drawn from bulk glasses,” Optics Express, 2006, 14(1): 82–87.

    [55] R. Nagai and T. Aoki, “Ultra-low-loss tapered optical fibers with minimal lengths,” Optics Express, 2014, 22(23): 28427–28436.

    [56] L. Shi, X. Chen, H. Liu, Y. Chen, Z. Ye, W. Liao, et al., “Fabrication of submicron-diameter silica fibers using electric strip heater,” Optics Express, 2006, 14(12): 5055–5060.

    [57] I. Yokohama, J. Noda, and K. Okamoto, “Fiber-coupler fabrication with automatic fusion-elongation processes for low excess loss and high coupling-ratio accuracy,” Journal of Lightwave Technology, 1987, 5(7): 910–915.

    [58] F. Bilodeau, K. O. Hill, S. Faucher, and D. C. Johnson, “Low-loss highly overcoupled fused couplers: Fabrication and sensitivity to external pressure,” Journal of Lightwave Technology, 1988, 6(10): 1476–1482.

    [59] G. Brambilla and D. N. Payne, “The ultimate strength of glass silica nanowires,” Nano Letters, 2009, 9(2): 831–835.

    [60] L. Tong, J. Lou, R. R. Gattass, S. He, X. Chen, L. Liu, et al., “Assembly of silica nanowires on silica aerogels for microphotonic devices,” Nano Letters, 2005, 5(2): 259–262.

    [61] H. Yu, S. Wang, J. Fu, M. Qiu, Y. Li, F. Gu, et al. “Modeling bending losses of optical nanofibers or nanowires,” Applied Optics, 2009, 48(22): 4365–4369.

    [62] M. Sumetsky, Y. Dulashko, J. M. Fini, and A. Hale, “Optical microfiber loop resonator,” Applied Physics Letters, 2005, 86(16): 161108.

    [63] M. Sumetsky, Y. Dulashko, J. M. Fini, A. Hale, and D. J. Digiovanni, “The microfiber loop resonator: Theory, experiment, and application,” Journal of Lightwave Technology, 2006, 24(1): 242–250.

    [64] X. Jiang, Q. Yang, G. Vienne, Y. Li, L. Tong, J. Zhang, et al., “Demonstration of microfiber knot laser,” Applied Physics Letters, 2006, 89(14): 143513.

    [65] X. Jiang, Q. Song, L. Xu, J. Fu, and L. Tong, “Microfiber knot dye laser based on the evanescent-wave-coupled gain,” Applied Physics Letters, 2007, 90(23): 233501.

    [66] M. Sumetsky, “Optical fiber microcoil resonator,” Optics Express, 2004, 12(10): 2303–2316.

    [67] M. Sumetsky, “Uniform coil optical resonator and waveguide: transmission spectrum, eigenmodes, and dispersion relation,” Optics Express, 2005, 13(11): 4331–4340.

    [68] F. Xu, P. Horak, and G. Brambilla, “Optical microfiber coil resonator refractometric sensor,” Optics Express, 2007, 15(12): 7888–7893.

    [69] F. Xu and G. Brambilla, “Demonstration of a refractometric sensor based on optical microfiber coil resonator,” Applied Physics Letters, 2008, 92(10): 101126.

    [70] F. Xu and G. Brambilla, “Embedding optical microfiber coil resonators in Teflon,” Optics Letters, 2007, 32(15): 2164–2166.

    [71] P. Wang, M. Ding, G. Brambilla, Y. Semenova, Q. Wu, and G. Farrell, “High temperature performance of an optical microfibre coupler and its potential use as a sensor,” Electronics Letters, 2012, 48(5): 283–284.

    [72] M. Ding, P. Wang, and G. Brambilla, “Fast-response high-temperature microfiber coupler tip thermometer,” IEEE Photonics Technology Letters, 2012, 24(14): 1209–1211.

    [73] B. S. Kawasaki, K. O. Hill, and R. G. Lamont, “Biconical-taper single-mode fiber coupler,” Optics Letters, 1981, 6(7): 327–328.

    [74] Y. Jung, G. Brambilla, and D. J. Richardson, “Optical microfiber coupler for broadband single-mode operation,” Optics Express, 2009, 17(7): 5273–5278.

    [75] M. Ding, P. Wang, and G. Brambilla, “A microfiber coupler tip thermometer,” Optics Express, 2012, 20(5): 5402–5408.

    [76] K. Liu, Y. He, A. Yang, L. Shi, L. Huang, P. Zhou, et al., “Resonant response and mode conversion of the microsphere coupled with a microfiber coupler,” Optics Letters, 2019, 44(4): 879–882.

    [77] Y. Li and L. Tong, “Mach-Zehnder interferometers assembled with optical microfibers or nanofibers,” Optics Letters, 2008, 33(4): 303–305.

    [78] J. Wo, G. Wang, Y. Cui, Q. Sun, R. Liang, P. P. Shum, et al., “Refractive index sensor using microfiber-based Mach-Zehnder interferometer,” Optics Letters, 2012, 37(1): 67–69.

    [79] J. Li, L. P. Sun, S. Gao, Z. Quan, Y. L. Chang, Y. Ran, et al., “Ultrasensitive refractive-index sensors based on rectangular silica microfibers,” Optics Letters, 2011, 36(18): 3593–3595.

    [80] L. Sun, J. Li, Y. Tan, X. Shen, X. Xie, S. Gao, et al., “Miniature highly-birefringent microfiber loop with extremely-high refractive index sensitivity,” Optics Express, 2012, 20(9): 10180–10185.

    [81] W. B. Ji, H. H. Liu, S. C. Tjin, K. K. Chow, and A. Lim, “Ultrahigh sensitivity refractive index sensor based on optical microfiber,” IEEE Photonics Technology Letters, 2012, 24(20): 1872–1874.

    [82] C. R. Biazoli, S. Silva, M. a. R. Franco, O. Fraz-o, and C. M. B. Cordeiro, “Multimode interference tapered fiber refractive index sensors,” Applied Optics, 2012, 51(24): 5941–5945.

    [83] C. Li, S. Qiu, Y. Chen, F. Xu, and Y. Lu, “Ultra-sensitive refractive index sensor with slightly tapered photonic crystal fiber,” IEEE Photonics Technology Letters, 2012, 24(19): 1771–1774.

    [84] J. Yang, L. Jiang, S. Wang, B. Li, M. Wang, H. Xiao, et al., “High sensitivity of taper-based Mach-Zehnder interferometer embedded in a thinned optical fiber for refractive index sensing,” Applied Optics, 2011, 50(28): 5503–5507.

    [85] L. Xu, Y. Li, and B. Li, “Nonadiabatic fiber taper-based Mach-Zehnder interferometer for refractive index sensing,” Applied Physics Letters, 2012, 101(15): 153510.

    [86] M. I. Zibaii, H. Latifi, M. Karami, M. Gholami, S. M. Hosseini, and M. H. Ghezelayagh, “Non-adiabatic tapered optical fiber sensor for measuring the interaction between α-amino acids in aqueous carbohydrate solution,” Measurement Science and Technology, 2010, 21(10): 105801.

    [87] L. P. Sun, J. Li, L. Jin, and B. O. Guan, “Structural microfiber long-period gratings,” Optics Express, 2012, 20(16): 18079–18084.

    [88] B. L. Li, J. H. Chen, F. Xu, and Y. Q. Lu, “Periodic micro-structures in optical microfibers induced by Plateau-Rayleigh instability and its applications,” Optics Express, 2017, 25(4): 4326–4334.

    [89] Y. Tan, L. P. Sun, L. Jin, J. Li, and B. O. Guan, “Microfiber Mach-Zehnder interferometer based on long period grating for sensing applications,” Optics Express, 2013, 21(1): 154–164.

    [90] B. S. Kawasaki and K. O. Hill, “Low-loss access coupler for multimode optical fiber distribution networks,” Applied Optics, 1977, 16(7): 1794–1795.

    [91] R. A. Bergh, G. Kotler, and H. J. Shaw, “Single-mode fibre optic directional coupler,” Electronics Letters, 1980, 16(7): 260–261.

    [92] Y. Szu-Wen, W. Tzong-Lin, W. Cheng Wen, and C. Hung-Chun, “Numerical modeling of weakly fused fiber-optic polarization beamsplitters. Part II: the three-dimensional electromagnetic model,” Journal of Lightwave Technology, 1998, 16(4): 691.

    [93] C. R. Liao, D. N. Wang, X. He, and M. W. Yang, “Twisted optical microfibers for refractive index sensing,” IEEE Photonics Technology Letters, 2011, 23(13): 848–850.

    [94] S. C. Yan, Y. Chen, C. Li, F. Xu, and Y. Q. Lu, “Differential twin receiving fiber-optic magnetic field and electric current sensor utilizing a microfiber coupler,” Optics Express, 2015, 23(7): 9407–9414.

    [95] Q. Zhang, J. Lei, B. Cheng, Y. Song, L. Hua, and H. Xiao, “A microfiber half coupler for refractive index sensing,” IEEE Photonics Technology Letters, 2017, 29(18): 1525–1528.

    [96] S. Pu, L. Luo, J. Tang, L. Mao, and X. Zeng, “Ultrasensitive refractive-index sensors based on tapered fiber coupler with Sagnac loop,” IEEE Photonics Technology Letters, 2016, 28(10): 1073–1076.

    [97] Y. Chen, S. C. Yan, X. Zheng, F. Xu, and Y. Q. Lu, “A miniature reflective micro-force sensor based on a microfiber coupler,” Optics Express, 2014, 22(3): 2443–2450.

    [98] L. Zu, H. Zhang, Y. Miao, and B. Li, “Microfiber coupler with a Sagnac loop for water pollution detection,” in Proceedings of 18th International Conference on Optical Communications and Networks (ICOCN), Anhui, 2019, pp. 1–3.

    [99] H. Luo, Q. Sun, X. Li, Z. Yan, Y. Li, D. Liu, et al., “Refractive index sensitivity characteristics near the dispersion turning point of the multimode microfiber-based Mach-Zehnder interferometer,” Optics Letters, 2015, 40(21): 5042–5045.

    [100] ] K. Li, T. Zhang, G. Liu, N. Zhang, M. Zhang, and L. Wei, “Ultrasensitive optical microfiber coupler based sensors operating near the turning point of effective group index difference,” Applied Physics Letters, 2016, 109(10): 101101.

    [101] ] D. A. Jackson, A. Dandridge, and S. K. Sheem, “Measurement of small phase shifts using a single-mode optical-fiber interferometer,” Optics Letters, 1980, 5(4): 139–141.

    [102] ] R. Jha, J. Villatoro, G. Badenes, and V. Pruneri, “Refractometry based on a photonic crystal fiber interferometer,” Optics Letters, 2009, 34(5): 617–619.

    [103] ] Y. Du, Y. Chen, Y. Zhuang, C. Zhu, F. Tang, and J. Huang, “Probing nanostrain via a mechanically designed optical fiber interferometer,” IEEE Photonics Technology Letters, 2017, 29(16): 1348–1351.

    [104] ] Y. Xue, Y. S. Yu, R. Yang, C. Wang, C. Chen, J. C. Guo, et al., “Ultrasensitive temperature sensor based on an isopropanol-sealed optical microfiber taper,” Optics Letters, 2013, 38(8): 1209–1211.

    [105] ] M. F. Jaddoa, A. A. Jasim, M. Z. A. Razak, S. W. Harun, and H. Ahmad, “Highly responsive NaCl detector based on inline microfiber Mach-Zehnder interferometer,” Sensors and Actuators A: Physical, 2016, 237: 56–61.

    [106] ] V. P. Minkovich, J. Villatoro, D. Monzón-Hernández, S. Calixto, A. B. Sotsky, and L. I. Sotskaya, “Holey fiber tapers with resonance transmission for high-resolution refractive index sensing,” Optics Express, 2005, 13(19): 7609–7614.

    [107] ] P. Wang, M. Ding, L. Bo, C. Guan, Y. Semenova, W. Sun, et al., “Photonic crystal fiber half-taper probe based refractometer,” Optics Letters, 2014, 39(7): 2076–2079.

    [108] ] S. J. Qiu, Y. Chen, J. L. Kou, F. Xu, and Y. Q. Lu, “Miniature tapered photonic crystal fiber interferometer with enhanced sensitivity by acid microdroplets etching,” Applied Optics, 2011, 50(22): 4328–4332.

    [109] ] P. Wang, M. Ding, L. Bo, C. Guan, Y. Semenova, Q. Wu, et al., “Fiber-tip high-temperature sensor based on multimode interference,” Optics Letters, 2013, 38(22): 4617–4620.

    [110] ] R. M. Andre, C. R. Biazoli, S. O. Silva, M. B. Marques, C. M. B. Cordeiro, and O. Frazao, “Strain-temperature discrimination using multimode interference in tapered fiber,” IEEE Photonics Technology Letters, 2013, 25(2): 155–158.

    [111] ] T. Erdogan, “Fiber grating spectra,” Journal of Lightwave Technology, 1997, 15(8): 1277–1294.

    [112] ] K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication,” Applied Physics Letters, 1978, 32(10): 647–649.

    [113] ] K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” Journal of Lightwave Technology, 1997, 15(8): 1263–1276.

    [114] ] B. O. Guan, J. Li, L. Jin, and Y. Ran, “Fiber Bragg gratings in optical microfibers,” Optical Fiber Technology, 2013, 19(6): 793–801.

    [115] ] A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, and M. Giordano, “Thinned fiber Bragg gratings as high sensitivity refractive index sensor,” IEEE Photonics Technology Letters, 2004, 16(4): 1149–1151.

    [116] ] W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Applied Physics Letters, 2005, 86(15): 151122.

    [117] ] G. Kakarantzas, T. E. Dimmick, T. A. Birks, R. L. Roux, and P. S. J. Russell, “Miniature all-fiber devices based on CO2 laser microstructuring of tapered fibers,” Optics Letters, 2001, 26(15): 1137–1139.

    [118] ] X. Fang, C. R. Liao, and D. N. Wang, “Femtosecond laser fabricated fiber Bragg grating in microfiber for refractive index sensing,” Optics Letters, 2010, 35(7): 1007–1009.

    [119] ] Y. Zhang, B. Lin, S. C. Tjin, H. Zhang, G. Wang, P. Shum, et al., “Refractive index sensing based on higher-order mode reflection of a microfiber Bragg grating,” Optics Express, 2010, 18(25): 26345–26350.

    [120] ] P. Zhao, Y. Li, J. Zhang, L. Shi, and X. Zhang, “Nanohole induced microfiber Bragg gratings,” Optics Express, 2012, 20(27): 28625–28630.

    [121] ] C. Liao, K. Yang, J. Wang, Z. Bai, Z. Gan, and Y. Wang, “Helical microfiber Bragg grating printed by femtosecond laser for refractive index sensing,” IEEE Photonics Technology Letters, 2019, 31(12): 971–974.

    [122] ] K. P. Nayak, F. Le Kien, Y. Kawai, K. Hakuta, K. Nakajima, H. T. Miyazaki, et al., “Cavity formation on an optical nanofiber using focused ion beam milling technique,” Optics Express, 2011, 19(15): 14040–14050.

    [123] ] Y. Liu, C. Meng, A. P. Zhang, Y. Xiao, H. Yu, and L. Tong, “Compact microfiber Bragg gratings with high-index contrast,” Optics Letters, 2011, 36(16): 3115–3117.

    [124] ] J. L. Kou, S. J. Qiu, F. Xu, and Y. Q. Lu, “Demonstration of a compact temperature sensor based on first-order Bragg grating in a tapered fiber probe,” Optics Express, 2011, 19(19): 18452–18457.

    [125] ] M. Ding, P. Wang, T. Lee, and G. Brambilla, “A microfiber cavity with minimal-volume confinement,” Applied Physics Letters, 2011, 99(5): 051105.

    [126] ] M. Ding, M. N. Zervas, and G. Brambilla, “A compact broadband microfiber Bragg grating,” Optics Express, 2011, 19(16): 15621–15626.

    [127] ] J. Feng, M. Ding, J. Kou, F. Xu, and Y. Lu, “An optical fiber tip micrograting thermometer,” IEEE Photonics Journal, 2011, 3(5): 810–814.

    [128] ] J. Kou, S. Qiu, F. Xu, Y. Lu, Y. Yuan, and G. Zhao, “Miniaturized metal-dielectric-hybrid fiber tip grating for refractive index sensing,” IEEE Photonics Technology Letters, 2011, 23(22): 1712–1714.

    [129] ] W. Ding, S. R. Andrews, T. A. Birks, and S. A. Maier, “Modal coupling in fiber tapers decorated with metallic surface gratings,” Optics Letters, 2006, 31(17): 2556–2558.

    [130] ] Y. Shen, L. Yao, Z. Li, J. Kou, Y. Cui, J. Bian, et al., “Double transfer UV-curing nanoimprint lithography,” Nanotechnology, 2013, 24(46): 465304.

    [131] ] F. Xu, G. Brambilla, and Y. Lu, “A microfluidic refractometric sensor based on gratings in optical fibre microwires,” Optics Express, 2009, 17(23): 20866–20871.

    [132] ] F. Xu, G. Brambilla, J. Feng, and Y. Lu, “A microfiber Bragg grating based on a microstructured rod: a proposal,” IEEE Photonics Technology Letters, 2010, 22(4): 218–220.

    [133] ] J. L. Kou, Z. D. Huang, G. Zhu, F. Xu, and Y. Q. Lu, “Wave guiding properties and sensitivity of D-shaped optical fiber microwire devices,” Applied Physics B, 2011, 102(3): 615–619.

    [134] ] K. P. Nayak and K. Hakuta, “Photonic crystal formation on optical nanofibers using femtosecond laser ablation technique,” Optics Express, 2013, 21(2): 2480–2490.

    [135] ] H. Takashima, A. Fukuda, H. Maruya, T. Tashima, A. W. Schell, and S. Takeuchi, “Fabrication of a nanofiber Bragg cavity with high quality factor using a focused helium ion beam,” Optics Express, 2019, 27(5): 6792–6800.

    [136] ] R. Yalla, M. Sadgrove, K. P. Nayak, and K. Hakuta, “Cavity quantum electrodynamics on a nanofiber using a composite photonic crystal cavity,” Physical Review Letters, 2014, 113(14): 143601.

    [137] ] J. Kou, F. Xu, and H. Choo, “Implementation of a high-Q, small mode volume cavity in microfibers using lattice-constant-varying nanohole arrays,” IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(5): 85–88.

    [138] ] I. M. White, H. Oveys, and X. Fan, “Liquid-core optical ring-resonator sensors,” Optics Letters, 2006, 31(9): 1319–1321.

    [139] ] M. Sumetsky, R. S. Windeler, Y. Dulashko, and X. Fan, “Optical liquid ring resonator sensor,” Optics Express, 2007, 15(22): 14376–14381.

    [140] ] J. L. Kou, J. Feng, Q. J. Wang, F. Xu, and Y. Q. Lu, “Microfiber-probe-based ultrasmall interferometric sensor,” Optics Letters, 2010, 35(13): 2308–2310.

    [141] ] J. L. Kou, J. Feng, L. Ye, F. Xu, and Y. Q. Lu, “Miniaturized fiber taper reflective interferometer for high temperature measurement,” Optics Express, 2010, 18(13): 14245–14250.

    [142] ] S. S. Wang, Z. F. Hu, Y. H. Li, and L. M. Tong, “All-fiber Fabry-Perot resonators based on microfiber sagnac loop mirrors,” Optics Letters, 2009, 34(3): 253–255.

    [143] ] G. Vienne, A. Coillet, P. Grelu, M. E. Amraoui, J. C. Jules, F. Smektala, et al., “Demonstration of a reef knot microfiber resonator,” Optics Express, 2009, 17(8): 6224–6229.

    [144] ] Y. Jung, G. Brambilla, G. S. Murugan, and D. J. Richardson, “Optical racetrack ring-resonator based on two U-bent microfibers,” Applied Physics Letters, 2011, 98(2): 021109.

    [145] ] R. Ismaeel, T. Lee, F. Al-Saab, Y. Jung, and G. Brambilla, “A self-coupling multi-port microcoil resonator,” Optics Express, 2012, 20(8): 8568–8574.

    [146] ] Z. Xu, Q. Sun, B. Li, Y. Luo, W. Lu, D. Liu, et al., “Highly sensitive refractive index sensor based on cascaded microfiber knots with Vernier effect,” Optics Express, 2015, 23(5): 6662–6672.

    [147] ] Z. Xu, Y. Luo, D. Liu, P. P. Shum, and Q. Sun, “Sensitivity-controllable refractive index sensor based on reflective θ-shaped microfiber resonator cooperated with Vernier effect,” Scientific Reports, 2017, 7(1): 9620.

    [148] ] C. Y. Chao and L. J. Guo, “Design and optimization of microring resonators in biochemical sensing applications,” Journal of Lightwave Technology, 2006, 24(3): 1395–1402.

    [149] ] I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Optics Express, 2008, 16(2): 1020–1028.

    [150] ] X. Guo, M. Qiu, J. Bao, B. J. Wiley, Q. Yang, X. Zhang, et al., “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Letters, 2009, 9(12): 4515–4519.

    [151] ] S. C. Yan, Z. Y. Liu, C. Li, S. J. Ge, F. Xu, and Y. Q. Lu, “Hot-wire” microfluidic flowmeter based on a microfiber coupler,” Optics Letters, 2016, 41(24): 5680–5683.

    [152] ] F. Gu, G. Wu, and H. Zeng, “Hybrid photon-plasmon Mach-Zehnder interferometers for highly sensitive hydrogen sensing,” Nanoscale, 2015, 7(3): 924–929.

    [153] ] J. H. Chen, Y. Chen, W. Luo, J. L. Kou, F. Xu, and Y. Q. Lu, “Multifunctional optical nanofiber polarization devices with 3D geometry,” Optics Express, 2014, 22(15): 17890–17896.

    [154] ] H. Y. Lin, C. H. Huang, G. L. Cheng, N. K. Chen, and H. C. Chui, “Tapered optical fiber sensor based on localized surface plasmon resonance,” Optics Express, 2012, 20(19): 21693–21701.

    [155] ] Z. X. Ding, Z. N. Huang, Y. Chen, C. Mou, Y. Q. Lu, and F. Xu, “All-fiber ultrafast laser generating gigahertz-rate pulses based on a hybrid plasmonic microfiber resonator,” Advanced Photonics, 2020, 2(2): 026002.

    [156] ] J. H. Li, J. H. Chen, S. C. Yan, Y. P. Ruan, F. Xu, and Y. Q. Lu, “Versatile hybrid plasmonic microfiber knot resonator,” Optics Letters, 2017, 42(17): 3395–3398.

    [157] ] D. Cai, T. Tong, Z. Zhang, J. Pan, L. Zhang, and L. Tong, “Functional film coated optical micro/nanofibers for high-performance gas sensing,” IEEE Sensors Journal, 2019, 19(20): 9229–9234.

    [158] ] D. Li, G. Wu, J. Chen, S. Yan, Z. Liu, F. Xu, et al., “Ethanol gas sensor based on a hybrid polymethyl methacrylate-silica microfiber coupler,” Journal of Lightwave Technology, 2018, 36(10): 2031–2036.

    [159] ] F. Gu, X. Yin, H. Yu, P. Wang, and L. Tong, “Polyaniline/polystyrene single-nanowire devices for highly selective optical detection of gas mixtures,” Optics Express, 2009, 17(13): 11230–11235.

    [160] ] F. Gu, L. Zhang, X. Yin, and L. Tong, “Polymer single-nanowire optical sensors,” Nano Letters, 2008, 8(9): 2757–2761.

    [161] ] J. H. Chen, G. Q. Deng, S. C. Yan, C. Li, K. Xi, F. Xu, et al. “Microfiber-coupler-assisted control of wavelength tuning for Q-switched fiber laser with few-layer molybdenum disulfide nanoplates,” Optics Letters, 2015, 40(15): 3576–3579.

    [162] ] Y. Wu, B. Yao, A. Zhang, Y. Rao, Z. Wang, Y. Cheng, et al., “Graphene-coated microfiber bragg grating for high-sensitivity gas sensing,” Optics Letters, 2014, 39(5): 1235–1237.

    [163] ] S. Sridevi, K. S. Vasu, S. Sampath, S. Asokan, and A. K. Sood, “Optical detection of glucose and glycated hemoglobin using etched fiber Bragg gratings coated with functionalized reduced graphene oxide,” Journal of Biophotonics, 2016, 9(7): 760–769.

    [164] ] C. B. Yu, Y. Wu, X. L. Liu, B. C. Yao, F. Fu, Y. Gong, et al., “Graphene oxide deposited microfiber knot resonator for gas sensing,” Optical Materials Express, 2016, 6(3): 727–733.

    [165] ] Y. Huang, B. Yu, T. Guo, and B. O. Guan, “Ultrasensitive and in situ DNA detection in various pH environments based on a microfiber with a graphene oxide linking layer,” RSC Advances, 2017, 7(22): 13177–13183.

    [166] ] B. C. Yao, Y. Wu, A. Q. Zhang, Y. J. Rao, Z. G. Wang, Y. Cheng, et al., “Graphene enhanced evanescent field in microfiber multimode interferometer for highly sensitive gas sensing,” Optics Express, 2014, 22(23): 28154–28162.

    [167] ] Y. Wu, B. C. Yao, A. Q. Zhang, X. L. Cao, Z. G. Wang, Y. J. Rao, et al., “Graphene-based D-shaped fiber multicore mode interferometer for chemical gas sensing,” Optics Letters, 2014, 39(20): 6030–6033.

    [168] ] J. Zhang, H. Fu, J. Ding, M. Zhang, and Y. Zhu, “Graphene-oxide-coated interferometric optical microfiber ethanol vapor sensor,” Applied Optics, 2017, 56(31): 8828–8831.

    [169] ] Y. Bai, Y. Miao, H. Zhang, and J. Yao, “Simultaneous measurement of relative humidity and temperature using a microfiber coupler coated with molybdenum disulfide nanosheets,” Optical Materials Express, 2019, 9(7): 2846–2858.

    [170] ] J. H. Chen, J. Tan, G. X. Wu, X. J. Zhang, F. Xu, and Y. Q. Lu, “Tunable and enhanced light emission in hybrid WS2-optical-fiber-nanowire structures,” Light: Science & Applications, 2019, 8(1): 1–8.

    [171] ] D. Zhang, H. Guan, W. Zhu, J. Yu, H. Lu, W. Qiu, et al., “All light-control-light properties of molybdenum diselenide (MoSe2)-coatedmicrofiber,” Optics Express, 2017, 25(23): 28536–28546.

    [172] ] S. R. Azzuhri, I. S. Amiri, A. S. Zulkhairi, M. A. M. Salim, M. Z. A. Razak, M. F. Khyasudeen, et al., “Application of graphene oxide based microfiber-knot resonator for relative hu

    Wei LUO, Ye CHEN, Fei XU. Recent Progress in Microfiber-Optic Sensors[J]. Photonic Sensors, 2021, 11(1): 45
    Download Citation