
- Photonics Research
- Vol. 10, Issue 8, 1828 (2022)
Abstract
1. INTRODUCTION
Bound states in the continuum (BICs), as perfect confinement of light in an open system, have been extensively studied both experimentally and theoretically [1–3], spanning from quantum mechanics to photonics [4,5]. Such non-radiating eigenmodes are peculiar states that remain localized with lifetimes that diverge to infinity, although a leaky channel may be present. Various types of BICs that originate from diverse physical mechanisms have been proposed in numerous geometrical photonics systems, such as symmetry-protected BICs, Friedrich–Wintgen (FW) BICs, and accidental single-resonance BICs [6]. These BICs facilitate exciting applications including enhanced optical nonlinearity [7], high-efficiency light guiding, and optical sensing [8] and have been implemented in zero-index plasmonic metamaterials [9,10], photonic slabs [11], high-index Mie resonators [12], and others [13]; they usually have a topological nature [14] and significantly enhanced light–matter interactions [15–17]. However, current investigations on BICs are restricted in reciprocal systems, and their mechanisms and behaviors in nonreciprocal systems are still elusive, as well as their applications to nonreciprocal devices. Nonreciprocal devices that exhibit different responses of the same transmission channel when their sources and detectors are interchanged have become fundamental building blocks in photonic systems [18–20], and drive widespread applications with asymmetric wave manipulation [21] assisted by magnetic bias, nonlinearities, or external gains and losses [22,23]. Such applications usually require nonreciprocal eigenmodes with high quality factors (
However, nonreciprocal BICs are very challenging to realize in generic systems. One reason is that the system supporting stable BICs is invariant under
Figure 1.(a) Geometry of the plasmonic coating sanwiched structure. (b) Antiparallel-magnetism configuration with MWS coating. Unidirectional quasi-BICs and their corresponding radiation leakage in left (blue) and right (red) propagation are presented. BICs are achieved in both propagation directions in (a), while only the right propagating BIC (red) is in (b). (c) Angular-frequency dispersions of MWS in different amounts of magnetization. Red, yellow, green, blue, and purple lines correspond to different
In this paper, we propose a feasible paradigm toward unidirectional and dynamic BICs by introducing magnetism asymmetry from magnetic Weyl semimetal (MWS) slabs as shown in Fig. 1(b). By incorporating novel MWS into the system, large nonreciprocity but lower losses can be achieved without external magnetic bias, compared to the conventional counterpart of magnetoplasmonic materials [34,35]. The major findings of this work are that properly pairing MWS in an antiparallel-magnetism configuration could establish unidirectional quasi-BICs and a symmetry-protected quasi-BIC at
2. OPTICAL RESPONSE OF MAGNETIC WEYL SEMIMETAL
As a class of emerging low-dimensional quantum materials, MWS simultaneously supports intrinsic optical nonreciprocity and magneto-optic (MO) plasmonics characteristics [39,40]. The large MO response is endowed by its unique topological electronic bands and is easily tunable by the chemical doping and its intrinsic momentum. With net zero chirality, pairs of topologically protected gapless crossing points, known as Weyl nodes, exist at the corners of the Brillouin zone in conical reciprocal space, resulting in monopoles and anti-monopoles with different Berry curvatures [41,42]. These paired Weyl nodes exhibit opposite chirality and are separated by a wave vector
A concrete expression of its optical response can be described by the additional axion term in the electromagnetic action and has been applied in studying magnetic surface plasmon polaritons [45,46] and nonreciprocal modes in waveguides [47]. The constitutive relation of MWS can be written as [45]
Here,
Moreover, applying the random phase approximation and considering the interband electronic transitions in the Dirac cone, the diagonal term is derived through Kubo formalism as the following form [47]:
3. GENERATION OF UNIDIRECTIONAL QUASI-BIC AND SYMMETRY-PROTECTED QUASI-BIC IN NONRECIPROCAL SYSTEM
Having established the optical responses of MWS, we discuss more details of unidirectional quasi-BICs in our structure composed of a planar dielectric slab covered by MWS, where the direction of magnetism is perpendicular to the incidence plane (Voigt configuration). A leaky mode could exist inside this dielectric core with the complex propagation constant
Figure 2.Reflection spectra for structure with (a) parallel and (b) antiparallel magnetism when the thickness of MWS is 0.1 μm;
Therefore, the Fabry–Perot resonance is symmetric regardless of propagation directions [Fig. 2(c)]. Such results are obtained from an ideal model in which a dielectric slab is covered by infinite MWS with
To better illustrate the unidirectional quasi-BIC, we performed an eigenmode analysis in the antiparallel-magnetism case [Fig. 1(b)]. Complex dispersion can be found in the pole of the scattering matrix of the source-free Maxwell equations, which can be derived into the following form:
Here,
Figure 3.(a) Angular-frequency dispersions of normalized
It is one of the sufficient conditions for symmetry-protected BICs [26] existing in nonreciprocal systems, and the detailed derivation can be found in Appendix E.
Importantly, the imaginary part of an eigenmode, i.e.,
4. TUNABILITY ON UNIDIRECTIONAL BIC
We now discuss the dynamic unidirectional quasi-BICs via tailoring the tunability of MWS based on two avenues available, by the argument of breaking the reciprocal response. First, one could change its intrinsic magnetization value in two MWS layers to break the time-reversal symmetry to generate unidirectional quasi-BICs. As shown in Figs. 4(a)–4(c), we vary the magnitude of its intrinsic magnetism in the lower MWS layer while keeping the upper MWS layer unchanged. A pair of asymmetric quasi-BICs still occur with different wave vectors [Fig. 4(a)], quite as expected due to the parallel magnetism. However, only one quasi-BIC exists in the
Figure 4.(a)–(d) Reflection spectra with different intrinsic magnetization values in two MWS layers. The insets are the corresponding schematic models. (e) Angular-frequency dispersions of the bulk MWS in different
Second, via controlling the
5. CONCLUSION
In conclusion, we realize unidirectional and dynamically tunable quasi-BICs in paired MWS slabs via tailoring their intrinsic MO responses. They show the extremely different radiation of forward and backward leaky modes—one mode perfectly closed despite being within the radiation channel, and the other open, which can be tuned by changing the geometric pairing and the
Acknowledgment
Acknowledgment. Y. Z. acknowledges NSFC, and C. Q. acknowledges the A*STAR Pharos Program.
APPENDIX A: QUASI-BOUND STATES IN THE CONTINUUM
In this appendix, we discuss the behavior of quasi-BICs in the system with magnetism without considering the loss of MWS. In Fig.
Figure 5.(a) Reflection and transmission spectrum dependence on transverse wave vector
Figure 6.Geometry of MWS sandwiched structure with (a) parallel magnetism and (b) antiparallel magnetism in the coatings.
APPENDIX B: DERIVATION OF SCATTERING MATRIX AND SOLUTION OF EIGENMODE
In this appendix, we present the detailed derivation of the scattering matrix and eigenequations in both parallel-magnetism [Fig.
Here, we assume time harmonic oscillations in the form
As we know, the traditional transfer matrix is the recursion of interface information and propagating factors, which can be written in the following form for a multilayer structure with
In MWS layers,
We can obtain the concrete form of the scattering matrix and get the eigenmode of the structure from the pole of it, which is the eigenfunction
We assume
Therefore, Eq. (
For the antiparallel-magnetism case, the result of the transfer matrix has a similar form except for the expressions of
Other symbols in the expressions are the same as the ones defined before in the parallel-magnetism case. So the eigenfunction becomes
We simplify this equation in the same way, and the function becomes
From Eq. (
APPENDIX C: MODE PROFILES IN ANTIPARALLEL-MAGNETISM CASE
Figure
Figure 7.Profile of each eigenmode in antiparallel-magnetism case. (a) Mode distribution of the real part of propagation constant, illustrated in the main text. (b)–(d) Magnetic field profile of the corresponding mode pointed out by the arrow in (a).
APPENDIX D: SYMMETRIC QUASI-BIC IN PARALLEL-MAGNETISM CASE
For comparison of quasi-BICs in the two magnetism cases, we calculate the reflection spectrum [Fig.
Figure 8.(a) Amplitude of reflection coefficients dependence on angular frequency and transverse wave vector in parallel-magnetism configuration with the thickness of MWS layers being 0.1 μm. The permittivity and thickness of the dielectric slab are
APPENDIX E: SYMMETRY REQUIREMENT FOR SYMMETRY-PROTECTED BIC IN NONRECIPROCAL SYSTEM
A symmetry-protected BIC can be supported in a system when it is invariant under
The
A similar result can be obtained from
It shows the permittivity tensor of MWS in a Voigt configuration will not be perturbed by the
Therefore, we can see that the direction of magnetization in the upper MWS layer flips after the
APPENDIX F: EFFECTS OF INTRINSIC LOSSES ON BICS
In the main text, the BICs and reflection spectra in a three-layer configuration with antiparallel magnetism at
Figure 9.Imaginary part of diagonal element of permittivity
Figure 10.Reflection spectra of anti-magnetism case with different losses of (a) 0.001, (b) 0.005, and (c) 0.008, and the geometric parameter is the same as that in the main text. (d) Reflection spectrum at the transverse wave vector of
References
[1] D. Marinica, A. Borisov, S. Shabanov. Bound states in the continuum in photonics. Phys. Rev. Lett., 100, 183902(2008).
[2] Y. Plotnik, O. Peleg, F. Dreisow, M. Heinrich, S. Nolte, A. Szameit, M. Segev. Experimental observation of optical bound states in the continuum. Phys. Rev. Lett., 107, 183901(2011).
[3] C. W. Hsu, B. Zhen, J. Lee, S. L. Chua, S. G. Johnson, J. D. Joannopoulos, M. Soljacic. Observation of trapped light within the radiation continuum. Nature, 499, 188-191(2013).
[4] F. H. Stillinger, D. R. Herrick. Bound states in the continuum. Phys. Rev. A, 11, 446-454(1975).
[5] M. G. Silveirinha. Trapping light in open plasmonic nanostructures. Phys. Rev. A, 89, 023813(2014).
[6] S. I. Azzam, A. V. Kildishev. Photonic bound states in the continuum: from basics to applications. Adv. Opt. Mater., 9, 2001469(2021).
[7] V. Kravtsov, E. Khestanova, F. A. Benimetskiy, T. Ivanova, A. K. Samusev, I. S. Sinev, D. Pidgayko, A. M. Mozharov, I. S. Mukhin, M. S. Lozhkin. Nonlinear polaritons in a monolayer semiconductor coupled to optical bound states in the continuum. Light Sci. Appl., 9, 56(2020).
[8] Z. Yu, X. Xi, J. Ma, H. K. Tsang, C.-L. Zou, X. Sun. Photonic integrated circuits with bound states in the continuum. Optica, 6, 1342-1348(2019).
[9] F. Monticone, H. M. Doeleman, W. Den Hollander, A. F. Koenderink, A. Alù. Trapping light in plain sight: embedded photonic eigenstates in zero-index metamaterials. Laser Photon. Rev., 12, 1700220(2018).
[10] F. Monticone, A. Alù. Embedded photonic eigenvalues in 3D nanostructures. Phys. Rev. Lett., 112, 213903(2014).
[11] C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, M. Soljačić. Bound states in the continuum. Nat. Rev. Mater., 1, 16048(2016).
[12] M. G. Barsukova, A. S. Shorokhov, A. I. Musorin, D. N. Neshev, Y. S. Kivshar, A. A. Fedyanin. Magneto-optical response enhanced by Mie resonances in nanoantennas. ACS Photon., 4, 2390-2395(2017).
[13] J. Gomis-Bresco, D. Artigas, L. Torner. Anisotropy-induced photonic bound states in the continuum. Nat. Photonics, 11, 232-236(2017).
[14] X. Yin, J. Jin, M. Soljacic, C. Peng, B. Zhen. Observation of topologically enabled unidirectional guided resonances. Nature, 580, 467-471(2020).
[15] J. Jin, X. Yin, L. Ni, M. Soljacic, B. Zhen, C. Peng. Topologically enabled ultrahigh-
[16] Y. Zeng, G. Hu, K. Liu, Z. Tang, C.-W. Qiu. Dynamics of topological polarization singularity in momentum space. Phys. Rev. Lett., 127, 176101(2021).
[17] P. Moitra, Y. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, J. Valentine. Realization of an all-dielectric zero-index optical metamaterial. Nat. Photonics, 7, 791-795(2013).
[18] C. Zhao, S. Dong, Q. Zhang, Y. Zeng, G. Hu, Y. Zhang. Magnetic modulation of topological polarization singularities in momentum space. Opt. Lett., 47, 2754-2757(2022).
[19] D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popović, A. Melloni, J. D. Joannopoulos. What is — and what is not —an optical isolator. Nat. Photonics, 7, 579-582(2013).
[20] F. Ruesink, M.-A. Miri, A. Alu, E. Verhagen. Nonreciprocity and magnetic-free isolation based on optomechanical interactions. Nat. Commun., 7, 13662(2016).
[21] L. Feng, M. Ayache, J. Huang, Y.-L. Xu, M.-H. Lu, Y.-F. Chen, Y. Fainman, A. Scherer. Nonreciprocal light propagation in a silicon photonic circuit. Science, 333, 729-733(2011).
[22] L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, C. Ross. On-chip optical isolation in monolithically integrated non-reciprocal optical resonators. Nat. Photonics, 5, 758-762(2011).
[23] K. Xia, F. Nori, M. Xiao. Cavity-free optical isolators and circulators using a chiral cross-Kerr nonlinearity. Phys. Rev. Lett., 121, 203602(2018).
[24] L. Feng, Z. J. Wong, R.-M. Ma, Y. Wang, X. Zhang. Single-mode laser by parity-time symmetry breaking. Science, 346, 972-975(2014).
[25] J. Qian, J. W. Rao, Y. S. Gui, Y. P. Wang, Z. H. An, C. M. Hu. Manipulation of the zero-damping conditions and unidirectional invisibility in cavity magnonics. Appl. Phys. Lett., 116, 192401(2020).
[26] B. Zhen, C. W. Hsu, L. Lu, A. D. Stone, M. Soljacic. Topological nature of optical bound states in the continuum. Phys. Rev. Lett., 113, 257401(2014).
[27] Z. Yu, Z. Wang, S. Fan. One-way total reflection with one-dimensional magneto-optical photonic crystals. Appl. Phys. Lett., 90, 121133(2007).
[28] C. W. Ling, J. Wang, K. H. Fung. Formation of nonreciprocal bands in magnetized diatomic plasmonic chains. Phys. Rev. B, 92, 165430(2015).
[29] Y. Liu, S. Palomba, Y. Park, T. Zentgraf, X. Yin, X. Zhang. Compact magnetic antennas for directional excitation of surface plasmons. Nano Lett., 12, 4853-4858(2012).
[30] E. Y. Tiguntseva, G. P. Zograf, F. E. Komissarenko, D. A. Zuev, A. A. Zakhidov, S. V. Makarov, Y. S. Kivshar. Light-emitting halide perovskite nanoantennas. Nano Lett., 18, 1185-1190(2018).
[31] K. Fan, I. V. Shadrivov, W. J. Padilla. Dynamic bound states in the continuum. Optica, 6, 169-173(2019).
[32] E. Penzo, S. Romano, Y. Wang, S. Dhuey, L. Dal Negro, V. Mocella, S. Cabrini. Patterning of electrically tunable light-emitting photonic structures demonstrating bound states in the continuum. J. Vac. Sci. Technol. B, 35, 06G401(2017).
[33] A. Kodigala, T. Lepetit, Q. Gu, B. Bahari, Y. Fainman, B. Kante. Lasing action from photonic bound states in continuum. Nature, 541, 196-199(2017).
[34] B. Q. Lv, H. M. Weng, B. B. Fu, X. P. Wang, H. Miao, J. Ma, P. Richard, X. C. Huang, L. X. Zhao, G. F. Chen, Z. Fang, X. Dai, T. Qian, H. Ding. Experimental discovery of Weyl semimetal TaAs. Phys. Rev. X, 5, 031013(2015).
[35] S. Zhang, Y. Xiong, G. Bartal, X. Yin, X. Zhang. Magnetized plasma for reconfigurable subdiffraction imaging. Phys. Rev. Lett., 106, 243901(2011).
[36] Z. Dai, G. Hu, Q. Ou, L. Zhang, F. Xia, F. J. Garcia-Vidal, C.-W. Qiu, Q. Bao. Artificial metaphotonics born naturally in two dimensions. Chem. Rev., 120, 6197-6246(2020).
[37] G. Hu, Q. Ou, G. Si, Y. Wu, J. Wu, Z. Dai, A. Krasnok, Y. Mazor, Q. Zhang, Q. Bao, C.-W. Qiu, A. Alu. Topological polaritons and photonic magic-angle in twisted van der Waals bi-layers. Nature, 582, 209-213(2020).
[38] Z. Chen, M. Segev. Highlighting photonics: looking into the next decade. eLight, 1, 2(2021).
[39] K. Geishendorf, P. Vir, C. Shekhar, C. Felser, J. I. Facio, J. van den Brink, K. Nielsch, A. Thomas, S. T. B. Goennenwein. Signatures of the magnetic entropy in the thermopower signals in nanoribbons of the magnetic Weyl semimetal Co3Sn2S2. Nano Lett., 20, 300-305(2020).
[40] D. F. Liu, A. J. Liang, E. K. Liu, Q. N. Xu, Y. W. Li, C. Chen, D. Pei, W. J. Shi, S. K. Mo, P. Dudin, T. Kim, C. Cacho, G. Li, Y. Sun, L. X. Yang, Z. K. Liu, S. S. P. Parkin, C. Felser, Y. L. Chen. Magnetic Weyl semimetal phase in a Kagomé crystal. Science, 365, 1282-1285(2019).
[41] A. A. Zyuzin, A. A. Burkov. Topological response in Weyl semimetals and the chiral anomaly. Phys. Rev. B, 86, 115133(2012).
[42] N. Morali, R. Batabyal, P. Kumar Nag, L. Enke, Q. Xu, Y. Sun, B. Yan, C. Felser, N. Avraham, H. Beidenkopf. Fermi-arc diversity on surface terminations of the magnetic Weyl semimetal Co3Sn2S2. Science, 365, 1286-1291(2019).
[43] H. T. Chorsi, S. Yue, P. P. Iyer, M. Goyal, T. Schumann, S. Stemmer, B. Liao, J. A. Schuller. Widely tunable optical and thermal properties of Dirac semimetal Cd3As2. Adv. Opt. Mater., 8, 1901192(2020).
[44] P. Li, J. Koo, W. Ning, J. Li, L. Miao, L. Min, Y. Zhu, Y. Wang, N. Alem, C.-X. Liu. Giant room temperature anomalous Hall effect and tunable topology in a ferromagnetic topological semimetal Co2MnAl. Nat. Commun., 11, 3476(2020).
[45] J. Hofmann, S. Das Sarma. Surface plasmon polaritons in topological Weyl semimetals. Phys. Rev. B, 93, 241402(2016).
[46] O. V. Kotov, Y. E. Lozovik. Dielectric response and novel electromagnetic modes in three-dimensional Dirac semimetal films. Phys. Rev. B, 93, 235417(2016).
[47] O. V. Kotov, Y. E. Lozovik. Giant tunable nonreciprocity of light in Weyl semimetals. Phys. Rev. B, 98, 195446(2018).
[48] J. R. Soh, F. de Juan, M. G. Vergniory, N. B. M. Schröter, M. C. Rahn, D. Y. Yan, J. Jiang, M. Bristow, P. A. Reiss, J. N. Blandy, Y. F. Guo, Y. G. Shi, T. K. Kim, A. McCollam, S. H. Simon, Y. Chen, A. I. Coldea, A. T. Boothroyd. Ideal Weyl semimetal induced by magnetic exchange. Phys. Rev. B, 100, 201102(2019).
[49] B. Zhao, C. Guo, C. A. Garcia, P. Narang, S. Fan. Axion-field-enabled nonreciprocal thermal radiation in Weyl semimetals. Nano Lett., 20, 1923-1927(2020).
[50] V. S. Asadchy, C. Guo, B. Zhao, S. Fan. Sub-wavelength passive optical isolators using photonic structures based on Weyl semimetals. Adv. Opt. Mater., 8, 2000100(2020).
[51] S. I. Azzam, V. M. Shalaev, A. Boltasseva, A. V. Kildishev. Formation of bound states in the continuum in hybrid plasmonic-photonic systems. Phys. Rev. Lett., 121, 253901(2018).
[52] H. Zhou, B. Zhen, C. W. Hsu, O. D. Miller, S. G. Johnson, J. D. Joannopoulos, M. Soljačić. Perfect single-sided radiation and absorption without mirrors. Optica, 3, 1079-1083(2016).
[53] L. Li. Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings. J. Opt. Soc. Am. A, 13, 1024-1035(1996).
[54] F. Monticone, A. Alù. Leaky-wave theory, techniques, and applications: from microwaves to visible frequencies. Proc. IEEE, 103, 793-821(2015).

Set citation alerts for the article
Please enter your email address