• Photonics Research
  • Vol. 10, Issue 8, 1828 (2022)
Chen Zhao1、2, Guangwei Hu2, Yang Chen2, Qing Zhang2, Yongzhe Zhang1、3、*, and Cheng-Wei Qiu2、4、*
Author Affiliations
  • 1Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
  • 2Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
  • 3e-mail: yzzhang@bjut.edu.cn
  • 4e-mail: chengwei.qiu@nus.edu.sg
  • show less
    DOI: 10.1364/PRJ.459383 Cite this Article Set citation alerts
    Chen Zhao, Guangwei Hu, Yang Chen, Qing Zhang, Yongzhe Zhang, Cheng-Wei Qiu. Unidirectional bound states in the continuum in Weyl semimetal nanostructures[J]. Photonics Research, 2022, 10(8): 1828 Copy Citation Text show less
    References

    [1] D. Marinica, A. Borisov, S. Shabanov. Bound states in the continuum in photonics. Phys. Rev. Lett., 100, 183902(2008).

    [2] Y. Plotnik, O. Peleg, F. Dreisow, M. Heinrich, S. Nolte, A. Szameit, M. Segev. Experimental observation of optical bound states in the continuum. Phys. Rev. Lett., 107, 183901(2011).

    [3] C. W. Hsu, B. Zhen, J. Lee, S. L. Chua, S. G. Johnson, J. D. Joannopoulos, M. Soljacic. Observation of trapped light within the radiation continuum. Nature, 499, 188-191(2013).

    [4] F. H. Stillinger, D. R. Herrick. Bound states in the continuum. Phys. Rev. A, 11, 446-454(1975).

    [5] M. G. Silveirinha. Trapping light in open plasmonic nanostructures. Phys. Rev. A, 89, 023813(2014).

    [6] S. I. Azzam, A. V. Kildishev. Photonic bound states in the continuum: from basics to applications. Adv. Opt. Mater., 9, 2001469(2021).

    [7] V. Kravtsov, E. Khestanova, F. A. Benimetskiy, T. Ivanova, A. K. Samusev, I. S. Sinev, D. Pidgayko, A. M. Mozharov, I. S. Mukhin, M. S. Lozhkin. Nonlinear polaritons in a monolayer semiconductor coupled to optical bound states in the continuum. Light Sci. Appl., 9, 56(2020).

    [8] Z. Yu, X. Xi, J. Ma, H. K. Tsang, C.-L. Zou, X. Sun. Photonic integrated circuits with bound states in the continuum. Optica, 6, 1342-1348(2019).

    [9] F. Monticone, H. M. Doeleman, W. Den Hollander, A. F. Koenderink, A. Alù. Trapping light in plain sight: embedded photonic eigenstates in zero-index metamaterials. Laser Photon. Rev., 12, 1700220(2018).

    [10] F. Monticone, A. Alù. Embedded photonic eigenvalues in 3D nanostructures. Phys. Rev. Lett., 112, 213903(2014).

    [11] C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, M. Soljačić. Bound states in the continuum. Nat. Rev. Mater., 1, 16048(2016).

    [12] M. G. Barsukova, A. S. Shorokhov, A. I. Musorin, D. N. Neshev, Y. S. Kivshar, A. A. Fedyanin. Magneto-optical response enhanced by Mie resonances in nanoantennas. ACS Photon., 4, 2390-2395(2017).

    [13] J. Gomis-Bresco, D. Artigas, L. Torner. Anisotropy-induced photonic bound states in the continuum. Nat. Photonics, 11, 232-236(2017).

    [14] X. Yin, J. Jin, M. Soljacic, C. Peng, B. Zhen. Observation of topologically enabled unidirectional guided resonances. Nature, 580, 467-471(2020).

    [15] J. Jin, X. Yin, L. Ni, M. Soljacic, B. Zhen, C. Peng. Topologically enabled ultrahigh-Q guided resonances robust to out-of-plane scattering. Nature, 574, 501-504(2019).

    [16] Y. Zeng, G. Hu, K. Liu, Z. Tang, C.-W. Qiu. Dynamics of topological polarization singularity in momentum space. Phys. Rev. Lett., 127, 176101(2021).

    [17] P. Moitra, Y. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, J. Valentine. Realization of an all-dielectric zero-index optical metamaterial. Nat. Photonics, 7, 791-795(2013).

    [18] C. Zhao, S. Dong, Q. Zhang, Y. Zeng, G. Hu, Y. Zhang. Magnetic modulation of topological polarization singularities in momentum space. Opt. Lett., 47, 2754-2757(2022).

    [19] D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popović, A. Melloni, J. D. Joannopoulos. What is — and what is not —an optical isolator. Nat. Photonics, 7, 579-582(2013).

    [20] F. Ruesink, M.-A. Miri, A. Alu, E. Verhagen. Nonreciprocity and magnetic-free isolation based on optomechanical interactions. Nat. Commun., 7, 13662(2016).

    [21] L. Feng, M. Ayache, J. Huang, Y.-L. Xu, M.-H. Lu, Y.-F. Chen, Y. Fainman, A. Scherer. Nonreciprocal light propagation in a silicon photonic circuit. Science, 333, 729-733(2011).

    [22] L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, C. Ross. On-chip optical isolation in monolithically integrated non-reciprocal optical resonators. Nat. Photonics, 5, 758-762(2011).

    [23] K. Xia, F. Nori, M. Xiao. Cavity-free optical isolators and circulators using a chiral cross-Kerr nonlinearity. Phys. Rev. Lett., 121, 203602(2018).

    [24] L. Feng, Z. J. Wong, R.-M. Ma, Y. Wang, X. Zhang. Single-mode laser by parity-time symmetry breaking. Science, 346, 972-975(2014).

    [25] J. Qian, J. W. Rao, Y. S. Gui, Y. P. Wang, Z. H. An, C. M. Hu. Manipulation of the zero-damping conditions and unidirectional invisibility in cavity magnonics. Appl. Phys. Lett., 116, 192401(2020).

    [26] B. Zhen, C. W. Hsu, L. Lu, A. D. Stone, M. Soljacic. Topological nature of optical bound states in the continuum. Phys. Rev. Lett., 113, 257401(2014).

    [27] Z. Yu, Z. Wang, S. Fan. One-way total reflection with one-dimensional magneto-optical photonic crystals. Appl. Phys. Lett., 90, 121133(2007).

    [28] C. W. Ling, J. Wang, K. H. Fung. Formation of nonreciprocal bands in magnetized diatomic plasmonic chains. Phys. Rev. B, 92, 165430(2015).

    [29] Y. Liu, S. Palomba, Y. Park, T. Zentgraf, X. Yin, X. Zhang. Compact magnetic antennas for directional excitation of surface plasmons. Nano Lett., 12, 4853-4858(2012).

    [30] E. Y. Tiguntseva, G. P. Zograf, F. E. Komissarenko, D. A. Zuev, A. A. Zakhidov, S. V. Makarov, Y. S. Kivshar. Light-emitting halide perovskite nanoantennas. Nano Lett., 18, 1185-1190(2018).

    [31] K. Fan, I. V. Shadrivov, W. J. Padilla. Dynamic bound states in the continuum. Optica, 6, 169-173(2019).

    [32] E. Penzo, S. Romano, Y. Wang, S. Dhuey, L. Dal Negro, V. Mocella, S. Cabrini. Patterning of electrically tunable light-emitting photonic structures demonstrating bound states in the continuum. J. Vac. Sci. Technol. B, 35, 06G401(2017).

    [33] A. Kodigala, T. Lepetit, Q. Gu, B. Bahari, Y. Fainman, B. Kante. Lasing action from photonic bound states in continuum. Nature, 541, 196-199(2017).

    [34] B. Q. Lv, H. M. Weng, B. B. Fu, X. P. Wang, H. Miao, J. Ma, P. Richard, X. C. Huang, L. X. Zhao, G. F. Chen, Z. Fang, X. Dai, T. Qian, H. Ding. Experimental discovery of Weyl semimetal TaAs. Phys. Rev. X, 5, 031013(2015).

    [35] S. Zhang, Y. Xiong, G. Bartal, X. Yin, X. Zhang. Magnetized plasma for reconfigurable subdiffraction imaging. Phys. Rev. Lett., 106, 243901(2011).

    [36] Z. Dai, G. Hu, Q. Ou, L. Zhang, F. Xia, F. J. Garcia-Vidal, C.-W. Qiu, Q. Bao. Artificial metaphotonics born naturally in two dimensions. Chem. Rev., 120, 6197-6246(2020).

    [37] G. Hu, Q. Ou, G. Si, Y. Wu, J. Wu, Z. Dai, A. Krasnok, Y. Mazor, Q. Zhang, Q. Bao, C.-W. Qiu, A. Alu. Topological polaritons and photonic magic-angle in twisted van der Waals bi-layers. Nature, 582, 209-213(2020).

    [38] Z. Chen, M. Segev. Highlighting photonics: looking into the next decade. eLight, 1, 2(2021).

    [39] K. Geishendorf, P. Vir, C. Shekhar, C. Felser, J. I. Facio, J. van den Brink, K. Nielsch, A. Thomas, S. T. B. Goennenwein. Signatures of the magnetic entropy in the thermopower signals in nanoribbons of the magnetic Weyl semimetal Co3Sn2S2. Nano Lett., 20, 300-305(2020).

    [40] D. F. Liu, A. J. Liang, E. K. Liu, Q. N. Xu, Y. W. Li, C. Chen, D. Pei, W. J. Shi, S. K. Mo, P. Dudin, T. Kim, C. Cacho, G. Li, Y. Sun, L. X. Yang, Z. K. Liu, S. S. P. Parkin, C. Felser, Y. L. Chen. Magnetic Weyl semimetal phase in a Kagomé crystal. Science, 365, 1282-1285(2019).

    [41] A. A. Zyuzin, A. A. Burkov. Topological response in Weyl semimetals and the chiral anomaly. Phys. Rev. B, 86, 115133(2012).

    [42] N. Morali, R. Batabyal, P. Kumar Nag, L. Enke, Q. Xu, Y. Sun, B. Yan, C. Felser, N. Avraham, H. Beidenkopf. Fermi-arc diversity on surface terminations of the magnetic Weyl semimetal Co3Sn2S2. Science, 365, 1286-1291(2019).

    [43] H. T. Chorsi, S. Yue, P. P. Iyer, M. Goyal, T. Schumann, S. Stemmer, B. Liao, J. A. Schuller. Widely tunable optical and thermal properties of Dirac semimetal Cd3As2. Adv. Opt. Mater., 8, 1901192(2020).

    [44] P. Li, J. Koo, W. Ning, J. Li, L. Miao, L. Min, Y. Zhu, Y. Wang, N. Alem, C.-X. Liu. Giant room temperature anomalous Hall effect and tunable topology in a ferromagnetic topological semimetal Co2MnAl. Nat. Commun., 11, 3476(2020).

    [45] J. Hofmann, S. Das Sarma. Surface plasmon polaritons in topological Weyl semimetals. Phys. Rev. B, 93, 241402(2016).

    [46] O. V. Kotov, Y. E. Lozovik. Dielectric response and novel electromagnetic modes in three-dimensional Dirac semimetal films. Phys. Rev. B, 93, 235417(2016).

    [47] O. V. Kotov, Y. E. Lozovik. Giant tunable nonreciprocity of light in Weyl semimetals. Phys. Rev. B, 98, 195446(2018).

    [48] J. R. Soh, F. de Juan, M. G. Vergniory, N. B. M. Schröter, M. C. Rahn, D. Y. Yan, J. Jiang, M. Bristow, P. A. Reiss, J. N. Blandy, Y. F. Guo, Y. G. Shi, T. K. Kim, A. McCollam, S. H. Simon, Y. Chen, A. I. Coldea, A. T. Boothroyd. Ideal Weyl semimetal induced by magnetic exchange. Phys. Rev. B, 100, 201102(2019).

    [49] B. Zhao, C. Guo, C. A. Garcia, P. Narang, S. Fan. Axion-field-enabled nonreciprocal thermal radiation in Weyl semimetals. Nano Lett., 20, 1923-1927(2020).

    [50] V. S. Asadchy, C. Guo, B. Zhao, S. Fan. Sub-wavelength passive optical isolators using photonic structures based on Weyl semimetals. Adv. Opt. Mater., 8, 2000100(2020).

    [51] S. I. Azzam, V. M. Shalaev, A. Boltasseva, A. V. Kildishev. Formation of bound states in the continuum in hybrid plasmonic-photonic systems. Phys. Rev. Lett., 121, 253901(2018).

    [52] H. Zhou, B. Zhen, C. W. Hsu, O. D. Miller, S. G. Johnson, J. D. Joannopoulos, M. Soljačić. Perfect single-sided radiation and absorption without mirrors. Optica, 3, 1079-1083(2016).

    [53] L. Li. Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings. J. Opt. Soc. Am. A, 13, 1024-1035(1996).

    [54] F. Monticone, A. Alù. Leaky-wave theory, techniques, and applications: from microwaves to visible frequencies. Proc. IEEE, 103, 793-821(2015).

    Chen Zhao, Guangwei Hu, Yang Chen, Qing Zhang, Yongzhe Zhang, Cheng-Wei Qiu. Unidirectional bound states in the continuum in Weyl semimetal nanostructures[J]. Photonics Research, 2022, 10(8): 1828
    Download Citation