We propose a plug-and-play (PnP) method that uses deep-learning-based denoisers as regularization priors for spectral snapshot compressive imaging (SCI). Our method is efficient in terms of reconstruction quality and speed trade-off, and flexible enough to be ready to use for different compressive coding mechanisms. We demonstrate the efficiency and flexibility in both simulations and five different spectral SCI systems and show that the proposed deep PnP prior could achieve state-of-the-art results with a simple plug-in based on the optimization framework. This paves the way for capturing and recovering multi- or hyperspectral information in one snapshot, which might inspire intriguing applications in remote sensing, biomedical science, and material science. Our code is available at:

- Photonics Research
- Vol. 9, Issue 2, B18 (2021)
Abstract
1. INTRODUCTION
Real scenes are spectrally rich. Capturing the color, and thus the spectral information, has been a central issue since the dawn of photography. Correspondingly, many strategies have been considered. Since the advent of solid-state imaging, the color filter array and especially the red–green–blue (RGB) bayer filter have been the dominant strategy [1]. These filter arrays usually only capture red, green, and blue bands and thus limit the spectral resolution. When the number of sampled wavelengths becomes large, bandpass filters, push-room, and other strategies may be desirable. These systems usually have limited temporal resolution due to the inherent scanning procedure. Advances in photonics and 2D materials give rise to compact solutions to single-shot spectrometers at a high spectral resolution [2–5]. More recently, it has been applied for spectral imaging via combining stacking [6], optical parallelization [7], and compressive sampling [8] strategies, where the trade-off between the spatial pixel and spectral resolution still remains a challenge. Thanks to compressive sensing (CS) [9–11] and the advent of decompressive inference algorithms over the past couple of decades, there is substantial interest in hyperspectral color filter arrays [12–14]. Such sampling strategies capture localized coded image features and are well-matched to sparsity-based inference algorithms [15–17]. With these advanced algorithms, this technique has led to single-shot imaging for hyperspectral images (HSIs), and we dub it snapshot compressive imaging (SCI) [16,18]. In this paper, we focus on the spectral SCI, which aims to measure the
Spectral SCI is a hardware encoder plus software decoder system, where the hardware encoder denotes the optical system, which compresses the 3D
The underlying principle of the spectral SCI hardware is to modulate different bands (corresponding to different wavelengths) in the spectral data cube by different weights and then integrate the light to the sensor. To perform the modulation, which should be different for different spectral bands, various techniques have been used. The pioneer work of coded aperture snapshot spectral imaging (CASSI) [12] used a fixed mask (coded aperture) and two dispersers to implement the band-wise modulation, termed DD-CASSI; here DD means dual disperser. Following this, the single-disperser (SD) CASSI was developed [19], which achieves modulation by removing a disperser. Following CASSI, various spectral SCI systems have been built using disperser/prism and masks [20–24]. Recently, motivated by the spectral variant responses of other media, spatial light modulators [25], ground-glass-based light field modulation [26], and scatters [27] have also been employed for spectral SCI. In addition, some compact systems have also been built [28,29].
Sign up for Photonics Research TOC. Get the latest issue of Photonics Research delivered right to you!Sign up now
The software decoder, i.e., the reconstruction algorithm, plays a pivotal role in spectral SCI as it outputs the desired data cube. At the beginning, optimization-based algorithms developed for inverse problems such as CS were employed. Since spectral SCI is an ill-posed problem, regularizers or priors are generally used, such as the sparsity [30] and total variation [15]. Later, the patch-based methods such as dictionary learning [25,31] and Gaussian mixture models [32] were developed for the reconstruction of spectral SCI. Recently, by utilizing the nonlocal similarity in the spectral data cube, group sparsity [17] and low-rank models [16] have been developed to achieve state-of-the-art results. The main bottleneck of these high performance iterative optimization-based algorithms is the low reconstruction speed. Since the spectral data cube is usually large-scale, sometimes it needs hours to reconstruct a spectral data cube from a snapshot measurement. This precludes the real applications of spectral SCI systems.
To address the above speed issue in optimization algorithms, and inspired by the performance of deep-learning approaches for other inverse problems [33,34], convolutional neural networks (CNNs) have been used to solve the inverse problem of spectral SCI for the sake of high speed [35–39]. These networks have led to better results than their optimization counterparts, given sufficient training data and time, which usually take days or weeks. After training, the network can output the reconstruction instantaneously and thus lead to end-to-end spectral SCI sampling and reconstruction [39]. However, these networks are usually system-specific. For example, different numbers of spectral bands exist in different spectral SCI systems. Further, due to the different designs of masks, the trained CNNs cannot be used in other systems, while retraining a new network from scratch would take a long time.
Bearing the above concerns in mind, i.e., optimization-based and deep-learning-based algorithms each have their own pros and cons, it is desirable to develop a fast, flexible, and high accuracy algorithm for spectral SCI. Fortunately, the plug-and-play (PnP) framework [40,41] has been proposed for inverse problems with provable convergence [42,43]. The idea of PnP is intuitive, since the goal is to use the state-of-the-art denoiser as a simple plug-in for recovery. The rationale here is to employ recent advanced deep denoisers [44–46] in the iterative optimization algorithm to speed up the reconstruction process. Since these denoisers are pretrained with a wide range of noise levels, the PnP algorithm is very efficient and usually only tens or hundreds of iterations would provide promising results [18]. More importantly, no training is required for different tasks and thus the same denoising network can be directly used in different systems. Therefore, PnP is a good trade-off for reconstruction quality, speed, and flexibility.
However, since most existing flexible denoising networks are designed for natural images, i.e., the gray-scale or RGB images, directly using these networks into spectral SCI systems would not lead to good results. To address this issue, in this paper, we propose training a flexible denoising network for multispectral/HSIs and then apply it to the PnP framework to solve the reconstruction problem of spectral SCI.
Our proposed approach enjoys the advantages of speed, flexibility, and high accuracy. We apply the proposed method in five different real systems (three SD-CASSI systems [39,47,48], one mutispectral endomicroscopy system [36], and one ghost imaging spectral system [26]) and all of them have achieved promising results. To compare with other state-of-the-art algorithms, simulations are also conducted to provide quantitative analysis. Spectral sensor design and fabrication [2,4–8] may benefit from our method by taking inspiration from the coding mechanisms and the simple plug-in for recovery.
Note that the PnP framework has been used in other inverse problems such as video CS [18], which emphasized the theoretical analysis of PnP for SCI problems in general and used an off-the-shelf denoiser (FFDNet) [46] to demonstrate its capability in video SCI. No spectral SCI results have been shown therein because spectral SCI is more challenging in terms of its various coding mechanisms and no off-the-shelf denoiser could provide a fast, flexible, and high-accuracy solution. As a matter of fact, this observation serves as the initial motivation for this paper. Towards this end, the novelty of this paper is twofold. First, we propose a CNN-based deep spectral denoising network as the spatio-spectral prior, which is flexible in terms of data size and the input noise levels. Second, we summarize the image-plane and aperture-plane coding mechanisms for spectral SCI and use the PnP method combined with our proposed deep spectral denoising prior for both simulations and five different spectral SCI systems (including image-plane and aperture-plane coding-based ones).
The paper is organized as follows. Section 2 introduces different spectral SCI systems. The proposed PnP method is derived in Section 3. Extensive results are shown in Section 4, and Section 5 concludes the entire paper.
2. SPECTRAL SCI
The basic idea of SCI is to encode 3D or multidimensional visual information onto 2D sensor measurement. For spectral SCI, a 3D spatio-spectral data cube is encoded to form a snapshot 2D measurement on the charge coupled device (CCD) or complementary metal oxide semiconductor (CMOS) sensor, as shown in Fig. 1.
Figure 1.Generalized image formation (left) and the discrete matrix-form model (right) of spectral SCI. Here color denotes the corresponding spectral band.
A. SCI Forward Model
The forward model of SCI is linear. For spectral SCI, the spectral data cube of the scene
The spatio-spectral coding mechanism is characterized by the sensing matrix (or transport matrix from the light transport perspective), i.e.,
B. Spectral SCI Systems
To encode spectral information onto a single-shot measurement, the sensing matrix must be spectrally variant. To this end, spectral SCI systems need to involve spectral dispersion devices (dispersers), like prisms, diffraction gratings, or diffusers.
Different spectral SCI systems distinguish each other by varying the coding mechanisms, which contribute to different structures of the sensing matrices. According to the coding mechanisms, i.e., the relative position of the coded mask, spectral SCI systems could be categorized into two types, i.e., image-plane coded masks and aperture-plane coded masks. The key difference here is whether one spatio-spectral voxel (e.g., the purple voxel on the left of Fig. 1) contributes to only one element of the sensing matrix
1. Image-Plane Coded Mask
For image-plane coding, the coded mask is typically located at the conjugate image plane of the sensor plane, where one spatio-spectral voxel is directly modulated by one pixel on the coded mask and then relayed to one pixel on the detector. Therefore, there is a voxel-to-pixel mapping between the scene and the corresponding column of the sensing matrix.
As mentioned before, CASSI [12,19,47,48] was the first spectral SCI system, to the best of our knowledge. And CASSI systems can be categorized into image-plane coded masks, whether they use dual dispersers or a single disperser. The key success of CASSI is to use a coded mask for spatial coding and implement a spectral shearing with a disperser (a prism [12,19,27,47,48], a grating [20], or other spectrally variant devices like spatial light modulators (SLMs) [25,49,50]) to encode 3D spatio-spectral information onto a snapshot measurement on a 2D detector.
DD-CASSI [12] preshears the spectral cube of the scene via the first prism and then spatially encodes it using a coded mask at the image plane, where the coded spectral cube is finally unsheared to match the size of the original spectral cube via the second prism. Thereby, each voxel of the scene spectral cube would correspond to one element in the sensing matrix, and the encoded spectral cube is unsheared and thus has the same spatial size as the 2D measurement thanks to the usage of two complementary prisms, as shown in the first row of Fig. 2. Single disperser, or SD-CASSI [19,47] does not preshear the scene spectral cube and only performs the spatial coding and spectral shearing with a coded mask and a prism successively, as shown in the upper part of Fig. 3. In this way, the encoded spectral cube is sheared and contains some zero rows along the shearing boundaries, as shown in the second row of Fig. 2.
Figure 2.Comparison of image-plane coding (upper) and aperture-plane coding (lower) spectral SCI systems in terms of sensing matrix. Here each color block denotes the corresponding transport matrix at that spectral band.
Figure 3.Image formation process of a typical spectral SCI system, i.e., SD-CASSI and the reconstruction process using the proposed deep PnP prior algorithm.
The common advantage of spectral SCI systems based on an image-plane coded mask is that since one spatio-spectral voxel contributes to only one element of the sensing matrix, the final sensing matrix is a concatenation of diagonal matrices, that is,
2. Aperture-Plane Coded Mask
Spectral SCI systems using an aperture-plane coded mask achieve spatial encoding at the aperture plane. Each spatio-spectral voxel in the scene spectral cube is propagated to the whole sensor plane, whereas only one point is propagated for the image-plane coded mask. In this way, the sensing matrix of aperture-plane coding is a dense matrix and
There are two types of implementations for aperture-plane coding of a spectral SCI. The main difference is whether the point spread function (PSF) of each spatio-spectral voxel of the scene spectral cube is spatially invariant or not. Typical spatially invariant implementations are using speckles along with memory effect [52,53] and a diffractive optical element (DOE) [28] for spatially invariant PSFs, as shown in the third row of Fig. 2. Less calibration is involved for spatially invariant implementations, which would also suffer from this assumption mismatch. Spatially variant PSFs are more general, with a ghost imaging via sparsity constraints (GISC) spectral camera [26,54] and the compact prism-based spectral camera [29] as two representatives, as shown in last row of Fig. 2. We will talk about both the algorithm for aperture-coding-based spectral SCI (Section 3.A) and the experimental results on the GISC spectral camera [54] (Section 4.B.3) as well.
3. METHODS
Recovering 3D or multidimensional information from 2D SCI measurements is an ill-posed linear inverse problem. The main take-away from the CS [9,10,55,56] community is that sub-Nyquist sampling and reliable recovery could be achieved by constraints of the sampling/sensing matrix [55,57] and proper priors of the signal. The performance bound of the SCI-induced sensing matrix has been proved in Ref. [58]. And the fact ion that denoisers using deep neural networks could serve as the prior of natural images with certain constraints on the network training process is getting wide attention [43].
For the sparsity prior of the signal,
We further use the PnP method [40,41] based on the alternating direction method of multipliers (ADMM) [59] for image-plane coding and the two-step iterative shrinkage/thresholding (TwIST) [15] algorithm for aperture-plane coding to solve Eq. (5).
A. PnP Method
The basic idea of PnP method for inverse problems is to use a pretrained denoiser for the desired signal as a prior. It builds on the optimization-based recovery method, where the whole inverse problem is broken into easier subproblems by handling the forward-model (data-fidelity) term and the prior term separately [59] and alternating the solutions to subproblems in an iterative manner. This is why it is called the PnP method, since the denoiser could serve as a simple plug-in for the reconstruction process. Here, for spectral SCI, we use a pretrained HSI denoising network as the deep spectral prior and integrate it into an iterative optimization framework for reconstruction, as shown in the lower part of Fig. 3. We will start with the PnP–ADMM method for spectral SCI with image-plane coding, and then substitute the ADMM projection with TwIST for aperture-plane coding. Note that the difference lies in the “Projection” step in Fig. 3.
The proposed PnP method has guaranteed convergence for SCI with a bounded denoiser [42,43] and the assumption of estimated noise levels in a nonincreasing order [18].
1. PnP–ADMM for Image-Plane Coding
The ADMM solution to the optimization problem Eq. (5) can be written as
Furthermore, recalling that
For spectral SCI, we use a deep spectral denoiser as the prior, as detailed in Section 3.B. This is very straightforward for DD-CASSI. However, for SD-CASSI, there are spatial shifts between adjacent spectral bands because the spectrum is not unsheared by another disperser. Pratically, we calibrate spatial shifts of all spectral bands or keep the same spatial shifts for all adjacent bands and calibrate the corresponding wavelengths. We take the spatial shifts into account by unshifting the spectral bands before applying denoising and then reshifting them back to match the forward model.
2. PnP–TwIST for Aperture-Plane Coding
As discussed in Section 2.B and Fig. 2, the sensing matrix of aperture-plane coding is dense and does not get
In response to the efficiency and computation stability issues caused by ADMM projection, we use one variant of the iterative shrinkage/thresholding algorithms (ISTAs) [62], i.e., TwIST [15] for aperture-plane coding. ISTA and its variants use
B. Deep Spectral Denoising Prior
From the idea of the PnP method for linear inverse problems, we can see that a proper denoiser could serve as a prior of optimization-based approaches, where a better denoiser would contribute to higher reconstruction quality. Deep-learning-based denoisers, especially those based on CNNs for images/videos are among the state of the art. A key challenge for using deep denoisers as priors is the flexibility in terms of data size and the input noise levels. According to Eq. (14) in PnP–ADMM and Eq. (17) in PnP–TwIST, the denoiser should be adapted to different input noise levels. Inspired by the recent advance of the fast and flexible denoising CNN (FFDNet) [46] and its success applied to video SCI [18], we propose using a deep spectral denoising network as the spatio-spectral prior, that is, the deep spectral denoising prior. The network structure of the deep spectral denoising prior is shown in Fig. 4.
Figure 4.Network structure of the deep spectral denoising prior.
The spectral image denoising problem can be formulated as
In order to consider the spectral correlation among adjacent bands, when denoising a center spectral frame with the size of
C. Training Details of Our Deep Spectral Image Denoising Network
Our denoising network is trained on the CAVE data set [66]. It contains 32 scenes with a pixel resolution of
Regarding the noise level
4. RESULTS
In this section, we verify the performance of the proposed PnP algorithm by extensive experiments. First, we conduct extensive simulations to compare PnP with other competitive methods. We then apply our PnP algorithm to data captured by real spectral SCI systems. Since different systems have different settings and parameters, the excellent results of our PnP verify the flexibility of the proposed algorithm. Note that, for end-to-endCNN methods such as
A. Simulations
Hereby, we verify the performance of PnP by simulation using different data sets of different sizes and compare it with other popular algorithms. For the simulation data, we generate measurements following the SD-CASSI framework, as shown in the second row of Fig. 2.
1. Data Sets
We employ the publicly available data sets ICVL [69] and KAIST [35] for simulation. The ICVL data are of spatial size
Figure 5.Test spectral data from (a) ICVL [69] and (b) KAIST [35] data sets used in simulation. The reference RGB images with pixel resolution
2. Competing Methods and Comparison Metrics
We compare our proposed PnP algorithm with other popular methods, including TwIST [15], generalized alternating projection based total variation minimization (GAP-TV) [51], auto-encoder (AE) [35], and U-net [70]. Note that TwIST and GAP-TV are conventional optimization methods employing the TV prior. Though TwIST has been used for a long time for CASSI-related systems, GAP-TV has recently shown a faster convergence than TwIST. AE is a deep-learning-based algorithm that takes into account the two aspects of spectral accuracy and spatial resolution. U-net is the backbone of recently proposed deep learning for spectral compressive imaging systems including
The U-net structure basically consists of two parts, the encoder part and the decoder part. Each encoder block consists of two
Both quantitative and qualitative metrics are used for comparison. The quantitative metrics are peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) [71]. For qualitative comparison, we plot spectral frames along with spectral curves and compare them with the ground truth for visual verification. Additionally, we use Pearson correlation coefficient (corr) to assess the fidelity of recovered spectra.
3. Parameter Setting
From the hardware side, we use a binary random mask composed of
For the proposed PnP algorithm, it usually needs a warm starting point to speed up the convergence. To address this, for the proposed PnP algorithm, we first run 80 iterations of GAP-TV. Since the only difference is the denoising algorithm, TV, or deep denoising, in each iteration, we only need to switch the denoising method in the flow chart, shown in Fig. 3.
The other important parameter of PnP is the noise level in each iteration. One method is to estimate the noise level in each iteration. However, this will make it computationally extensive. Therefore, similar to other PnP methods [18], we set the noise level manually in each iteration. This is also the reason we train the HSI denoising network to a wide noise range. Specifically, we set the noise level in a decreasing manner. For instance, assuming that the range of each pixel is [0,255], we set the noise level to 25 for 20 iterations, followed by 15 for 20 iterations and then tune the noise level to be smaller during the last few iterations.
4. Simulation Results of Different Spatial Sizes
Table 1 summarizes the average results of the 16 scenes shown in Fig. 5 with different spatial sizes. It can be seen that in all these three spatial sizes, PnP always leads to the best results. In particular, PnP outperforms GAP-TV by at least 2 dB in PSNR, which is the best among other algorithms. What else stands out in the table is that AE does not perform as well as in the DD-CASSI system shown in Ref. [35]. We also tested all the above algorithms using DD-CASSI; AE can achieve better results than other algorithms except PnP.
Average PSNR (in dB), SSIM, and Running Time (in Seconds) of 16 Simulation Scenes (8 from ICVL and 8 from KAIST) at Different Spatial Sizes Using Various Algorithms
Spatial Size | Data Set | TwIST | GAP-TV | AE | U-net | PnP | ||||||||||
PSNR | SSIM | Running | PSNR | SSIM | Running | PSNR | SSIM | Running | PSNR | SSIM | Running | PSNR | SSIM | Running | ||
ICVL | 30.58 | 0.8731 | 156.3 | 32.57 | 0.8794 | 130.2 | 29.41 | 0.8711 | 144.2 | 31.13 | 0.8897 | 0.8 | 35.03 | 0.9274 | 132.7 | |
KAIST | 27.32 | 0.8495 | 29.66 | 0.8584 | 26.79 | 0.8498 | 29.44 | 0.8941 | 33.21 | 0.9273 | ||||||
ICVL | 31.82 | 0.8955 | 1380.2 | 33.58 | 0.8965 | 399.1 | 31.22 | 0.8969 | 493.6 | NA | NA | NA | 35.68 | 0.9319 | 401.6 | |
KAIST | 29.09 | 0.8944 | 31.38 | 0.8993 | 29.28 | 0.8974 | NA | NA | 34.29 | 0.9378 | ||||||
ICVL | 32.68 | 0.9159 | 3657.6 | 34.22 | 0.9157 | 1460.7 | 32.03 | 0.9158 | 2053.5 | NA | NA | NA | 36.21 | 0.9434 | 1453.6 | |
KAIST | 31.64 | 0.9099 | 33.66 | 0.9134 | 31.05 | 0.9071 | NA | NA | 36.41 | 0.9433 |
NA denotes not available.
Regarding the running time, it can be seen that for the size of
Figure 6 shows the results of 31 bands of each algorithm with the spatial size of
Figure 6.Simulation results of color-checker with size of
Figure 7.Simulation results of exemplar scenes (top, ICVL; bottom, KAIST) with size of
For other sizes of the spectral cube, in order to visualize the recovered color, we convert the spectral images to synthetic-RGB (sRGB) via the International Commission on Illumination (CIE) color-matching function [72]. The results are shown in Figs. 8 and 9, respectively, for the size of
Figure 8.Simulation results of four selected scenes shown in sRGB and spectral curves with spatial size of
Figure 9.Simulation results of four selected scenes shown in sRGB and spectral curves with spatial size of
B. Real Data
In this section, we apply our proposed PnP algorithm into five real spectral SCI systems, namely, three SD-CASSI systems [39,47,48], one snapshot multispectral endomicroscopy [36], and a ghost spectral compressive imaging system [54]. Note that our PnP framework is using the pretrained HSI denoising network on the simulation data. Though these systems have different spatial and spectral resolutions, PnP can be used directly to all these systems. Due to the speed consideration, we only compare with TwIST and/or GAP-TV in these real data sets.
1. Single-Disperser CASSI
We now show three results of SD-CASSI. These measurements are captured by different systems built at different labs.
Figure 10.Real data, object SD-CASSI data (
Figure 11.Real data, bird SD-CASSI data (
Figure 12.Real data, Lego SD-CASSI data (
Figure 13.Real data, plant SD-CASSI data (
2. Snapshot Multispectral Endomicroscopy
Next, we apply our PnP algorithm to the snapshot multispectral endomicroscopy system built recently [36], which is a spectral SCI system plus a fiber bundle for endoscopy. It has 24 bands in the visible bandwidth, with a spatial size of
Figure 14.Real data, snapshot multispectral endomicroscopy data (
3. Ghost Imaging Spectral Camera
Different from CASSI architecture, ghost imaging provides another solution to capture the spectral cube in a snapshot manner via aperture-plane coding. Hereby, we apply the PnP algorithm to the ghost imaging data captured by the system built in Ref. [54]. Since the sensing matrix of these data is large, as shown in Fig. 2, we only use the bandwidth between 510 and 660 nm with an interval of 10 nm. The spatial-spectral size of these data is
Figure 15.Real data, GISC spectral camera data (
5. CONCLUSION
We have developed a deep PnP algorithm for the reconstruction of spectral SCI. We trained a deep denoiser for hyper/multispectral images and plugged it to the ADMM and TwIST frameworks for different spectral CS systems. Importantly, a single pretrained denoiser can be applied to different systems with different settings. Therefore, our proposed algorithm is highly flexible and is ready to be used in different real applications. Extensive results on both simulation and real data captured by diverse systems have verified the performance of our proposed algorithm.
The running time scales linearly to the number of spectral bands because each spectral band is denoised individually by taking its neighboring
References
[1] B. E. Bayer. Color imaging array. U.S. patent(1976).
[4] J. Bao, M. G. Bawendi. A colloidal quantum dot spectrometer. Nature, 523, 67-70(2015).
[8] Y. Kwak, S. M. Park, Z. Ku, A. Urbas, Y. L. Kim. A pearl spectrometer. Nano Lett.(2020).
[9] D. Donoho. Compressed sensing. IEEE Trans. Inf. Theory, 52, 1289-1306(2006).
[18] X. Yuan, Y. Liu, J. Suo, Q. Dai. Plug-and-play algorithms for large-scale snapshot compressive imaging. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 1447-1457(2020).
[37] X. Miao, X. Yuan, Y. Pu, V. Athitsos. λ-net: reconstruct hyperspectral images from a snapshot measurement. IEEE/CVF Conference on Computer Vision (ICCV), 4058-4068(2019).
[38] L. Wang, C. Sun, Y. Fu, M. H. Kim, H. Huang. Hyperspectral image reconstruction using a deep spatial-spectral prior. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 8024-8033(2019).
[39] Z. Meng, J. Ma, X. Yuan. End-to-end low cost compressive spectral imaging with spatial-spectral self-attention. European Conference on Computer Vision (ECCV), 187-204(2020).
[40] S. V. Venkatakrishnan, C. A. Bouman, B. Wohlberg. Plug-and-play priors for model based reconstruction. IEEE Global Conference on Signal and Information Processing, 945-948(2013).
[43] E. K. Ryu, J. Liu, S. Wang, X. Chen, Z. Wang, W. Yin. Plug-and-play methods provably converge with properly trained denoisers(2019).
[49] R. Zhu, T. Tsai, D. J. Brady. Coded aperture snapshot spectral imager based on liquid crystal spatial light modulator. Frontiers in Optics, FW1D-4(2013).
[51] X. Yuan. Generalized alternating projection based total variation minimization for compressive sensing. IEEE International Conference on Image Processing (ICIP), 2539-2543(2016).
[60] N. Parikh, S. Boyd. Proximal algorithms. Found. Trends Optim., 1, 127-239(2014).
[61] W. W. Hager. Updating the inverse of a matrix. SIAM Rev., 31, 221-239(1989).
[64] M. Tassano, J. Delon, T. Veit. FastDVDnet: towards real-time deep video denoising without flow estimation. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 1354-1363(2020).
[67] A. Paszke, H. Wallach, S. Gross, H. Larochelle, A. Beygelzimer, F. Massa, F. d’ Alché-Buc, A. Lerer, J. Bradbury, E. Fox, G. Chanan, R. Garnett, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, S. Chintala. PyTorch: an imperative style, high-performance deep learning library. Advances in Neural Information Processing Systems 32, 8024-8035(2019).
[68] D. P. Kingma, J. Ba. Adam: a method for stochastic optimization(2014).
[69] B. Arad, O. Ben-Shahar. Sparse recovery of hyperspectral signal from natural RGB images. European Conference on Computer Vision, 19-34(2016).
[70] O. Ronneberger, P. Fischer, T. Brox. U-net: convolutional networks for biomedical image segmentation. International Conference on Medical Image Computing and Computer-Assisted Intervention, 234-241(2015).

Set citation alerts for the article
Please enter your email address