• Laser & Optoelectronics Progress
  • Vol. 56, Issue 24, 240103 (2019)
Lianghua Wen1、*, Qinying Huang2, and Xunqian Xu1
Author Affiliations
  • 1School of Physics and Electronic Engineering, Yibin University, Yibin, Sichuan 644000, China
  • 2Sino-US Institute of Applied Technology, Yibin University, Yibin, Sichuan 644000, China
  • show less
    DOI: 10.3788/LOP56.240103 Cite this Article Set citation alerts
    Lianghua Wen, Qinying Huang, Xunqian Xu. Optimizing Correction Algorithm for Adaptive Optics Based on Square of Wavefront Gradient[J]. Laser & Optoelectronics Progress, 2019, 56(24): 240103 Copy Citation Text show less
    References

    [1] Muller R A, Buffington A. Real-time correction of atmospherically degraded telescope images through image sharpening[J]. Journal of the Optical Society of America, 64, 1200-1210(1974). http://www.opticsinfobase.org/abstract.cfm?uri=josa-64-9-1200

    [2] O'Meara T R. The multidither principle in adaptive optics[J]. Journal of the Optical Society of America, 67, 306-315(1977). http://www.onacademic.com/detail/journal_1000035233580310_9faf.html

    [3] Jiang W H, Huang S F, Wu X B. Hill-climbing adaptive optics wavefront correction system[J]. Chinese Journal of Lasers, 15, 17-21(1988).

    [4] Vorontsov M A, Carhart G W, Ricklin J C. Adaptive phase-distortion correction based on parallel gradient-descent optimization[J]. Optics Letters, 22, 907-909(1997). http://www.ncbi.nlm.nih.gov/pubmed/18185702

    [5] Wang Z B, Wei D, Wei L et al. Aberration correction during real time in vivo imaging of bone marrow with sensorless adaptive optics confocal microscope[J]. Journal of Biomedical Optics, 19, 086009(2014). http://www.ncbi.nlm.nih.gov/pubmed/25117079

    [6] Hofer H, Sredar N, Queener H et al. Wavefront sensorless adaptive optics ophthalmoscopy in the human eye[J]. Optics Express, 19, 14160-14171(2011). http://pubmedcentralcanada.ca/pmcc/articles/PMC3178895/

    [7] Lei X, Wang S, Yan H et al. Double-deformable-mirror adaptive optics system for laser beam cleanup using blind optimization[J]. Optics Express, 20, 22143-22157(2012). http://test.europepmc.org/abstract/MED/23037363

    [8] Yang P, Ning Y, Lei X et al. Enhancement of the beam quality of non-uniform output slab laser amplifier with a 39-actuator rectangular piezoelectric deformable mirror[J]. Optics Express, 18, 7121-7130(2010).

    [9] Yang P, Lei X, Yang R et al. Fast and stable enhancement of the far-field peak power by use of an intracavity deformable mirror[J]. Applied Physics B, 100, 591-595(2010).

    [10] Dong L, Yang P, Xu B et al. High-order mode Laguerre-Gaussian beam transformation using a 127-actuator deformable mirror: numerical simulations[J]. Applied Physics B, 104, 725-733(2011).

    [11] Liang Y H, Wang S H, Long X J et al. Experimental explorations of the laser beam cleanup system based on stochastic parallel-gradient-descent algorithm[J]. Acta Optica Sinica, 28, 613-618(2008).

    [12] Liu L, Guo J, Zhao S et al. Application of stochastic parallel gradient descent algorithm in laser beam shaping[J]. Chinese Optics, 7, 260-266(2014).

    [13] Mu J, Jing F, Wang X et al. Error control of piston and tilt based on SPGD in coherent beam combination[J]. Chinese Journal of Lasers, 41, 0602002(2014).

    [14] Huang G, Geng C, Li F et al. Single-mode fiber adaptive coupling technology based on a FPGA hardware control platform[J]. Chinese Journal of Lasers, 44, 0406001(2017).

    [15] Wu Z K, Chen M, Liu C et al. Single-mode fiber coupling based on raster spiral scanning and SPGD algorithm[J]. Laser & Optoelectronics Progress, 54, 060602(2017).

    [16] Weyrauch T, Vorontsov M A. Free-space laser communications with adaptive optics: atmospheric compensation experiments[J]. Journal of Optical and Fiber Communications Reports, 1, 355-379(2004). http://link.springer.com/article/10.1007/s10297-005-0033-5

    [17] Wu J, Yang H Z, Gong C L. Research of stochastic parallel gradient descent algorithm based on segmentation random disturbance amplitude[J]. Chinese Journal of Lasers, 41, 0712001(2014).

    [18] Huang Z M, Tang X, Liu C L et al. Stochastic parallel gradient descent algorithm with a variable gain coefficient and its application in coherent beam combining[J]. Chinese Journal of Lasers, 42, 0402004(2015).

    [19] Luo C, Su R T, Wang X L et al. Adaptive stochastic parallel gradient descent algorithm and its application in coherent beam combining[J]. Acta Optica Sinica, 34, s101006(2014).

    [20] Chen B, Yang J, Li X Y et al. Adaptive optics control technique based on orthogonal mode perturbance gradient descent algorithm[J]. Acta Optica Sinica, 35, 0801004(2015).

    [21] Hu D T, Shen W, Ma W C et al. Fast convergence stochastic parallel gradient descent algorithm[J]. Laser & Optoelectronics Progress, 56, 122201(2019).

    [22] Vorontsov M A, Sivokon V P. Stochastic parallel-gradient-descent technique for high-resolution wave-front phase-distortion correction[J]. Journal of the Optical Society of America A, 15, 2745-2758(1998). http://www.opticsinfobase.org/abstract.cfm?uri=josaa-15-10-2745

    [23] Huang L H, Rao C H. Wavefront sensorless adaptive optics: a general model-based approach[J]. Optics Express, 19, 371-379(2011). http://europepmc.org/abstract/MED/21263576

    [24] Yang H Z, Soloviev O, Verhaegen M. Model-based wavefront sensorless adaptive optics system for large aberrations and extended objects[J]. Optics Express, 23, 24587-24601(2015).

    [25] Noll R J. Zernike polynomials and atmospheric turbulence[J]. Journal of the Optical Society of America, 66, 207-211(1976). http://mnras.oxfordjournals.org/external-ref?access_num=10.1364/JOSA.66.000207&link_type=DOI

    Lianghua Wen, Qinying Huang, Xunqian Xu. Optimizing Correction Algorithm for Adaptive Optics Based on Square of Wavefront Gradient[J]. Laser & Optoelectronics Progress, 2019, 56(24): 240103
    Download Citation