• Photonics Research
  • Vol. 10, Issue 12, 2702 (2022)
Zhi-Xiang Li1、†, Dong Zhu1、†, Pei-Cheng Lin1, Peng-Cheng Huo1, Hong-Kuan Xia1, Ming-Ze Liu1, Ya-Ping Ruan1, Jiang-Shan Tang1, Miao Cai1, Hao-Dong Wu1, Chao-Ying Meng1, Han Zhang1, Peng Chen1, Ting Xu1, Ke-Yu Xia1、2、3、4、*, Li-Jian Zhang1、5、*, and Yan-Qing Lu1、6、*
Author Affiliations
  • 1National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
  • 2Hefei National Laboratory, Hefei 230088, China
  • 3Shishan Laboratory, Suzhou Campus of Nanjing University, Suzhou 215000, China
  • 4e-mail:
  • 5e-mail:
  • 6e-mail:
  • show less
    DOI: 10.1364/PRJ.470663 Cite this Article Set citation alerts
    Zhi-Xiang Li, Dong Zhu, Pei-Cheng Lin, Peng-Cheng Huo, Hong-Kuan Xia, Ming-Ze Liu, Ya-Ping Ruan, Jiang-Shan Tang, Miao Cai, Hao-Dong Wu, Chao-Ying Meng, Han Zhang, Peng Chen, Ting Xu, Ke-Yu Xia, Li-Jian Zhang, Yan-Qing Lu. High-dimensional entanglement generation based on a Pancharatnam–Berry phase metasurface[J]. Photonics Research, 2022, 10(12): 2702 Copy Citation Text show less
    References

    [1] M. Erhard, M. Krenn, A. Zeilinger. Advances in high-dimensional quantum entanglement. Nat. Rev. Phys., 2, 365-381(2020).

    [2] F. G. Deng, B. C. Ren, X. H. Li. Quantum hyperentanglement and its applications in quantum information processing. Sci. Bull., 62, 46-68(2017).

    [3] M. Malik, M. Erhard, M. Huber, M. Krenn, R. Fickler, A. Zeilinger. Multi-photon entanglement in high dimensions. Nat. Photonics, 10, 248-252(2016).

    [4] X.-M. Hu, W.-B. Xing, B.-H. Liu, Y.-F. Huang, C.-F. Li, G.-C. Guo, P. Erker, M. Huber. Efficient generation of high-dimensional entanglement through multipath down-conversion. Phys. Rev. Lett., 125, 090503(2020).

    [5] Y. Chen, S. Ecker, L. Chen, F. Steinlechner, M. Huber, R. Ursin. Temporal distinguishability in Hong-Ou-Mandel interference for harnessing high-dimensional frequency entanglement. NPJ Quantum Inf., 7, 167(2021).

    [6] M. Hiekkamäki, R. Fickler. High-dimensional two-photon interference effects in spatial modes. Phys. Rev. Lett., 126, 123601(2021).

    [7] M. Erhard, R. Fickler, M. Krenn, A. Zeilinger. Twisted photons: new quantum perspectives in high dimensions. Light Sci. Appl., 7, 17146(2018).

    [8] G. Molina-Terriza, J. P. Torres, L. Torner. Twisted photons. Nat. Phys., 3, 305-310(2007).

    [9] R. Qu, Y. Wang, M. An, F. Wang, Q. Quan, H. Li, H. Gao, F. Li, P. Zhang. Retrieving high-dimensional quantum steering from a noisy environment with N measurement settings. Phys. Rev. Lett., 128, 240402(2022).

    [10] P. Imany, J. A. Jaramillo-Villegas, M. S. Alshaykh, J. M. Lukens, O. D. Odele, A. J. Moore, D. E. Leaird, M. Qi, A. M. Weiner. High-dimensional optical quantum logic in large operational spaces. NPJ Quantum Inf., 5, 59(2019).

    [11] X.-L. Wang, Y.-H. Luo, H.-L. Huang, M.-C. Chen, Z.-E. Su, C. Liu, C. Chen, W. Li, Y.-Q. Fang, X. Jiang, J. Zhang, L. Li, N.-L. Liu, C.-Y. Lu, J.-W. Pan. 18-qubit entanglement with six photons’ three degrees of freedom. Phys. Rev. Lett., 120, 260502(2018).

    [12] X. Chen, Z. Fu, Q. Gong, J. Wang. Quantum entanglement on photonic chips: a review. Adv. Photon., 3, 064002(2021).

    [13] J. Liu, M. Shi, Z. Chen, S. Wang, Z. Wang, S. Zhu. Quantum photonics based on metasurfaces. Opto-Electron. Advan., 4, 200092(2021).

    [14] A. S. Solntsev, G. S. Agarwal, Y. S. Kivshar. Metasurfaces for quantum photonics. Nat. Photonics, 15, 327-336(2021).

    [15] M. Liu, W. Zhu, P. Huo, L. Feng, M. Song, C. Zhang, L. Chen, H. J. Lezec, Y. Lu, A. Agrawal, T. Xu. Multifunctional metasurfaces enabled by simultaneous and independent control of phase and amplitude for orthogonal polarization states. Light Sci. Appl., 10, 107(2021).

    [16] W. Pan, Z. Wang, Y. Chen, S. Li, X. Zheng, X. Tian, C. Chen, N. Xu, Q. He, L. Zhou, S. Sun. High-efficiency generation of far-field spin-polarized wavefronts via designer surface wave metasurfaces. Nanophotonics, 11, 2025-2036(2022).

    [17] J. Xiang, Z. Tao, X. Li, Y. Zhao, Y. He, X. Guo, Y. Su. Metamaterial-enabled arbitrary on-chip spatial mode manipulation. Light Sci. Appl., 11, 168(2022).

    [18] P. Huo, M. Song, W. Zhu, C. Zhang, L. Chen, H. J. Lezec, Y. Lu, A. Agrawal, T. Xu. Photorealistic full-color nanopainting enabled by a low-loss metasurface. Optica, 7, 1171-1172(2020).

    [19] S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, M.-K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T.-T. Huang, J.-H. Wang, R.-M. Lin, C.-H. Kuan, T. Li, Z. Wang, S. Zhu, D. P. Tsai. A broadband achromatic metalens in the visible. Nat. Nanotechnol., 13, 227-232(2018).

    [20] A. Vega, T. Pertsch, F. Setzpfandt, A. A. Sukhorukov. Metasurface-assisted quantum ghost discrimination of polarization objects. Phys. Rev. Appl., 16, 064032(2021).

    [21] E. Tseng, S. Colburn, J. Whitehead, L. Huang, S.-H. Baek, A. Majumdar, F. Heide. Neural nano-optics for high-quality thin lens imaging. Nat. Commun., 12, 6493(2021).

    [22] R. C. Devlin, A. Ambrosio, N. A. Rubin, J. P. B. Mueller, F. Capasso. Arbitrary spin-to–orbital angular momentum conversion of light. Science, 358, 896-901(2017).

    [23] F. Zhang, X. Xie, M. Pu, Y. Guo, X. Ma, X. Li, J. Luo, Q. He, H. Yu, X. Luo. Multistate switching of photonic angular momentum coupling in phase-change metadevices. Adv. Mater., 32, 1908194(2020).

    [24] K. Wang, J. G. Titchener, S. S. Kruk, L. Xu, H.-P. Chung, M. Parry, I. I. Kravchenko, Y.-H. Chen, A. S. Solntsev, Y. S. Kivshar, D. N. Neshev, A. A. Sukhorukov. Quantum metasurface for multiphoton interference and state reconstruction. Science, 361, 1104-1108(2018).

    [25] L. Li, Z. Liu, X. Ren, S. Wang, V.-C. Su, M.-K. Chen, C. H. Chu, H. Y. Kuo, B. Liu, W. Zang, G. Guo, L. Zhang, Z. Wang, S. Zhu, D. P. Tsai. Metalens-array–based high-dimensional and multiphoton quantum source. Science, 368, 1487-1490(2020).

    [26] T. Stav, A. Faerman, E. Maguid, D. Oren, V. Kleiner, E. Hasman, M. Segev. Quantum entanglement of the spin and orbital angular momentum of photons using metamaterials. Science, 361, 1101-1104(2018).

    [27] P. Georgi, M. Massaro, K.-H. Luo, B. Sain, N. Montaut, H. Herrmann, T. Weiss, G. Li, C. Silberhorn, T. Zentgraf. Metasurface interferometry toward quantum sensors. Light Sci. Appl., 8, 70(2019).

    [28] W. J. M. Kort-Kamp, A. K. Azad, D. A. R. Dalvit. Space-time quantum metasurfaces. Phys. Rev. Lett., 127, 043603(2021).

    [29] J. Zhou, S. Liu, H. Qian, Y. Li, H. Luo, S. Wen, Z. Zhou, G. Guo, B. Shi, Z. Liu. Metasurface enabled quantum edge detection. Sci. Adv., 6, eabc4385(2020).

    [30] D. Zhang, Y. Chen, S. Gong, W. Wu, W. Cai, M. Ren, X. Ren, S. Zhang, G. Guo, J. Xu. All-optical modulation of quantum states by nonlinear metasurface. Light Sci. Appl., 11, 58(2022).

    [31] S. Chen, Y. Cai, G. Li, S. Zhang, K. W. Cheah. Geometric metasurface fork gratings for vortex-beam generation and manipulation. Laser Photon. Rev., 10, 322-326(2016).

    [32] Y. Qiu, S. Tang, T. Cai, H. Xu, F. Ding. Fundamentals and applications of spin-decoupled Pancharatnam–Berry metasurfaces. Front. Optoelectron., 14, 134-147(2021).

    [33] P. Chen, B.-Y. Wei, W. Ji, S.-J. Ge, W. Hu, F. Xu, V. Chigrinov, Y.-Q. Lu. Arbitrary and reconfigurable optical vortex generation: a high-efficiency technique using director-varying liquid crystal fork gratings. Photon. Res., 3, 133-139(2015).

    [34] T. Kim, M. Fiorentino, F. N. C. Wong. Phase-stable source of polarization-entangled photons using a polarization Sagnac interferometer. Phys. Rev. A, 73, 12316(2006).

    [35] D. F. V. James, P. G. Kwiat, W. J. Munro, A. G. White. Measurement of qubits. Phys. Rev. A, 64, 052312(2001).

    [36] R. Fickler, G. Campbell, B. Buchler, P. K. Lam, A. Zeilinger. Quantum entanglement of angular momentum states with quantum numbers up to 10,010. Proc. Natl. Acad. Sci. USA, 113, 13642-13647(2016).

    [37] R. Fickler, M. Krenn, R. Lapkiewicz, S. Ramelow, A. Zeilinger. Real-time imaging of quantum entanglement. Sci. Rep., 3, 1914(2013).

    [38] P.-A. Moreau, E. Toninelli, T. Gregory, R. S. Aspden, P. A. Morris, M. J. Padgett. Imaging Bell-type nonlocal behavior. Sci. Adv., 5, eaaw256(2019).

    [39] M. W. Beijersbergen, L. Allen, H. E. L. O. van der Veen, J. P. Woerdman. Astigmatic laser mode converters and transfer of orbital angular momentum. Opt. Commun., 96, 123-132(1993).

    [40] P. Xue, R. Zhang, H. Qin, X. Zhan, Z. H. Bian, J. Li, B. C. Sanders. Experimental quantum-walk revival with a time-dependent coin. Phys. Rev. Lett., 114, 140502(2015).

    [41] N. A. Peters, J. B. Altepeter, D. Branning, E. R. Jeffrey, T.-C. Wei, P. G. Kwiat. Maximally entangled mixed states: creation and concentration. Phys. Rev. Lett., 92, 133601(2004).

    [42] P. Liu, Y. Fu, X. Xie, C. Min, Y. Zhang, X. Yuan. High-efficiency monolayer metallic metasurface for modulation of orbital angular momentum. Chin. Opt. Lett., 20, 123601(2022).

    [43] Y.-J. Gao, Z. Wang, Y. Jiang, R.-W. Peng, Z.-Y. Wang, D.-X. Qi, R.-H. Fan, W.-J. Tang, M. Wang. Multichannel distribution and transformation of entangled photons with dielectric metasurfaces. Phys. Rev. Lett., 129, 023601(2022).

    [44] A. Orieux, E. Diamanti. Recent advances on integrated quantum communications. J. Opt., 18, 083002(2016).

    [45] Q. Wang, Y. Zheng, C. Zhai, X. Li, Q. Gong, J. Wang. Chip-based quantum communications. J. Semicond., 42, 091901(2021).

    Zhi-Xiang Li, Dong Zhu, Pei-Cheng Lin, Peng-Cheng Huo, Hong-Kuan Xia, Ming-Ze Liu, Ya-Ping Ruan, Jiang-Shan Tang, Miao Cai, Hao-Dong Wu, Chao-Ying Meng, Han Zhang, Peng Chen, Ting Xu, Ke-Yu Xia, Li-Jian Zhang, Yan-Qing Lu. High-dimensional entanglement generation based on a Pancharatnam–Berry phase metasurface[J]. Photonics Research, 2022, 10(12): 2702
    Download Citation