• Infrared and Laser Engineering
  • Vol. 47, Issue 8, 803001 (2018)
Zhou Pu*, Su Rongtao, Huang Liangjin, and Li Jun
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/irla201847.0803001 Cite this Article
    Zhou Pu, Su Rongtao, Huang Liangjin, Li Jun. Research progress and future perspective on ultrafast fiber laser enabled by computing technique (invited)[J]. Infrared and Laser Engineering, 2018, 47(8): 803001 Copy Citation Text show less
    References

    [1] Fermann M E, Hartl I. Ultrafast fibre lasers[J]. Nat Photonics, 2013, 7(11): 868-874.

    [2] Liu M, Luo A, Yan Y, et al. Successive soliton explosions in an ultrafast fiber laser[J]. Opt Lett, 2016, 41(6): 1181-1184.

    [3] Mou C, Sergeyev S, Rozhin A, et al. All-fiber polarization locked vector soliton laser using carbon nanotubes[J]. Opt Lett, 2011, 36(19): 3831-3833.

    [4] Liu Y, Li W, Luo D, et al. Generation of 33 fs 93.5 W average power pulses from a third-order dispersion managed self-similar fiber amplifier[J]. Opt Express, 2016, 24(10): 10939-10945.

    [5] Shah L, Fermann M E, Dawson J W, et al. Micromachining with a 50 W, 50 μJ, sub-picosecond fiber laser system[J]. Opt Express, 2006, 14(25): 12546-12551.

    [6] Lu H K O, Elahi P, Aalan A, et al. High-repetition-rate ultrafast fiber lasers for material processing[J]. IEEE J Sel Top Quantum Electron, 2018, 24(3): 8800312.

    [7] Limpert J, Roser F, Schimpf D N, et al. High repetition rate gigawatt peak power fiber laser systems: challenges, design, and experiment[J]. IEEE J Sel Top Quantum Electron, 2009, 15(1): 8800312.

    [8] Frantz L M, Nodvik J S. Theory of pulse propagation in a laser amplifier[J]. J Appl Phys, 1963, 34(8): 2346-2349.

    [9] Wang Y, Po H. Dynamic characteristics of double-clad fiber amplifiers for high-power pulse amplification[J]. J Lightwave Technol, 2003, 21(10): 2262-2270.

    [10] Schimpf D N, Ruchert C, Nodop D, et al. Compensation of pulse-distortion in saturated laser amplifiers[J]. Opt Express, 2008, 16(22): 17637-17646.

    [11] Su R, Zhou P, Wang X, et al. Active coherent beam combination of two high-power single-frequency nanosecond fiber amplifiers[J]. Opt Lett, 2012, 37(4): 497-499.

    [12] Su R, Zhou P, Wang X, et al. Active coherent beam combining of a five-element, 800 watt nanosecond fiber amplifier array[J]. Opt Lett, 2012, 37(19): 3978-3980.

    [13] Malinowski A, Vu K T, Chen K K, et al. High power pulsed fiber MOPA system incorporating electro-optic modulator based adaptive pulse shaping[J]. Opt Express, 2009, 17(23): 20927-20937.

    [14] Lin D, Alam S, Chen K, et al. 100W, fully-fiberised ytterbium doped master oscillator power amplifier incorporating adaptive pulse shaping[C]//Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, 2009, CFM4.

    [15] Malinowski A, Gorman P, Codemard C A, et al. High-peak-power, high-energy, high-average-power pulsed fiber laser system with versatile pulse duration and shape[J]. Opt Lett, 2013, 38(22): 4686-4689.

    [16] Jiang M, Su R, Zhang P, et al. Arbitrary temporal shape pulsed fiber laser based on SPGD algorithm[J]. Laser Physics Letters, 2018, 15(6): 065101.

    [17] Sobon G A K P. Pulsed dual-stage fiber MOPA source operating at 1 550 nm with arbitrarily shaped output pulses[J]. Appl Phys B, 2011, 105(4): 721-727.

    [18] Li Z, Heidt A M, Teh P S, et al. High-energy diode-seeded nanosecond 2 μm fiber MOPA systems incorporating active pulse shaping[J]. Opt Lett, 2014, 39(6): 1569-1572.

    [19] Shi H A T F. High-power diode-seeded thulium-doped fiber MOPA incorporating active pulse shaping[J]. Appl Phys B, 2016, 122(10): 269.

    [20] Zhang H, Tang D Y, Zhao L M, et al. Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene[J]. Opt Express, 2009, 17(20): 17630-17635.

    [21] Sun Z, Hasan T, Torrisi F, et al. Graphene mode-locked ultrafast laser[J]. ACS Nano, 2010, 4(2): 803-810.

    [22] Wang X, Zhou P, Wang X, et al. Pulse bundles and passive harmonic mode-locked pulses in Tm-doped fiber laser based on nonlinear polarization rotation[J]. Opt Express, 2014, 22(5): 6147-6153.

    [23] Fermann M E, Andrejco M J, Silberberg Y, et al. Passive mode locking by using nonlinear polarization evolution in a polarization-maintaining erbium-doped fiber[J]. Opt Lett, 1993, 18(11): 894-896.

    [24] Yu Y, Teng H, Wang H, et al. Highly-stable mode-locked PM Yb-fiber laser with 10 nJ in 93-fs at 6 MHz using NALM[J]. Opt Express, 2018, 2 6(8): 10428-10434.

    [25] Haus H A. Mode-locking of lasers[J]. IEEE J Sel Top Quantum Electron, 2000, 6(6): 1173-1185.

    [26] Baumeister T, Brunton S L, Kutz J N. Deep learning and model predictive control for self-tuning mode-locked lasers[J]. J Opt Soc Am B, 2018, 35(3): 617-626.

    [27] Hellwig T A W T. Automated characterization and alignment of passively mode-locked fiber lasers based on nonlinear polarization rotation[J]. Appl Phys B, 2010, 101(3): 565-570.

    [28] Shen X, Li W, Yan M, et al. Electronic control of nonlinear-polarization-rotation mode locking in Yb-doped fiber lasers[J]. Opt Lett, 2012, 37(16): 3426-3428.

    [29] Olivier M, Gagnon M, E M P. Automated mode locking in nonlinear polarization rotation fiber lasers by detection of a discontinuous jump in the polarization state[J]. Opt Express, 2015, 23(5): 6738-6746.

    [30] Radnatarov D, Khripunov S, Kobtsev S, et al. Automatic electronic-controlled mode locking self-start in fibre lasers with non-linear polarisation evolution[J]. Opt Express, 2013, 21(18): 20626-20631.

    [31] Woodward R I, Kelleher E J R. Towards "smart lasers": self-optimisation of an ultrafast pulse source using a genetic algorithm[J]. Scientific Reports, 2016, 6: 37616.

    [32] Brunton S L, Fu X, Kutz J N. Extremum-seeking control of a mode-locked laser[J]. IEEE J Quantum Electron, 2013, 49(10): 852-861.

    [33] Brunton S L, Fu X, Kutz J N. Self-tuning fiber lasers[J]. IEEE J Sel Top Quantum Electron, 2014, 20(5): 1101408.

    [34] Andral U, Fodil R S, Amrani F, et al. Fiber laser mode locked through an evolutionary algorithm[J]. Optica, 2015, 2(4): 275-278.

    [35] Andral U, Buguet J, Fodil R S, et al. Toward an autosetting mode-locked fiber laser cavity[J]. J Opt Soc Am B, 2016, 33(5): 825-833.

    [36] Woodward R I, Kelleher E J. Self-optimizing mode-locked laser using a genetic algorithm[C]//Conference on Lasers and Electro-Optics, 2016, STu3P.6.

    [37] Winters D G, Kirchner M S, Backus S J, et al. Electronic initiation and optimization of nonlinear polarization evolution mode-locking in a fiber laser[J]. Opt Express, 2017, 25(26): 33216-33225.

    [38] Woodward R I, Kelleher E J R. Genetic algorithm-based control of birefringent filtering for self-tuning, self-pulsing fiber lasers[J]. Opt Lett, 2017, 42(15): 2952-2955.

    [39] Burgoyne B, Illeneuve A V. Programmable lasers: design and applications[C]//SPIE, 2010, 7580: 758002.

    [40] Théberge F, Daigle J F, Villeneuve A, et al. Tunable mid-infrared generation using synchronized programmable fiber lasers[C]//SPIE, 2012, 8381: 83810E.

    [41] Mourou G, Brocklesby B, Tajima T, et al. The future is fibre accelerators[J]. Nat Photonics, 2013, 7(4): 258-261.

    [42] Moustaizis S D, Lalousis P, Perrakis K, et al. ICAN: High power neutral beam generation[J]. Eur Phys J Special Topics, 2015, 224(13): 2639-2643.

    [43] Liu Z, Zhou P, Xu X, et al. Coherent Beam Combing of High Average Power Fiber Lasers[M]. Beijing: National Defence Industry Press, 2016. (in Chinese)

    [44] Vorontsov M A, Carhart W, Ricklin J C. Adaptive phase-distortion correction based on parallel gradient-descent optimization[J]. Opt Lett, 1997, 22(12): 907-909.

    [45] Zhou P, Ma Y, Wang X, et al. Coherent beam combining of fiber amplifiers based on stimulated annealing algorithm[J]. High Power Laser and Particle Beams, 2010, 22(5): 973-977. (in Chinese)

    [46] Jiang M, Su R, Zhang Z, et al. Coherent beam combining of fiber lasers using a CDMA-based single-frequency dithering technique[J]. Appl Opt, 2017, 56(15): 4255-4260.

    [47] Jiang M, Su R, Zhang Z, et al. Joint multiple access based efficient coherent beam combining of fiber lasers[J]. Laser Phys, 2018. (Submitted)

    [48] Goodno G D, Weiss S B. Automated co-alignment of coherent fiber laser arrays via active phase-locking[J]. Opt Express, 2012, 20(14): 14945-14953.

    [49] Su R, Zhou P, Zhang P, et al. Review on the progress in coherent beam combining of ultra-short fiber lasers[J]. Infrared and Laser Engineering, 2018, 47(1): 0103001. (in Chinese)

    [50] Yu H L, Zhang Z X, Wang X L, et al. High average power coherent femtosecond pulse combining system based on an all fiber active control method[J]. Laser Phys Lett, 2018, 15(7): 075101.

    [51] Jauregui C, Limpert J, Tunnermann A. High-power fibre lasers[J]. Nat Photon, 2013, 7(11): 861-867.

    [52] Tao R, Wang X, Zhou P. Comprehensive theoretical study of mode instability in high-power fiber lasers by employing a universal model and its implications[J]. IEEE J Sel Top Quantum Electron, 2018, 24(3): 0903319.

    [53] Pangovski K, Sparkes M, Cockburn A, et al. Control of material transport through pulse shape manipulation-a development toward designer pulses[J]. IEEE J Sel Top Quantum Electron, 2014, 20(5): 0901413.

    [54] Tercan H A K T. Improving the laser cutting process design by machine learning techniques[J]. Production Engineering, 2017, 11(2): 195-203.

    [55] Zhou P. Intelligent laser: a versatile tool for multidisciplinary education in photonics[C]//International Conference on Education and Training in Optics and Photonics (ETOP), 2017.

    CLP Journals

    [1] Li Yuan, Song Huanyu, Zhang Yun, Niu Jia, Liu Bowen, Hu Minglie. Effects of spectral modulation on self-similar amplification systems of femtosecond pulses[J]. Infrared and Laser Engineering, 2019, 48(1): 103005

    Zhou Pu, Su Rongtao, Huang Liangjin, Li Jun. Research progress and future perspective on ultrafast fiber laser enabled by computing technique (invited)[J]. Infrared and Laser Engineering, 2018, 47(8): 803001
    Download Citation