• Advanced Photonics
  • Vol. 1, Issue 2, 024002 (2019)
Basudeb Sain, Cedrik Meier, and Thomas Zentgraf*
Author Affiliations
  • University of Paderborn, Department of Physics, Paderborn, Germany
  • show less
    DOI: 10.1117/1.AP.1.2.024002 Cite this Article Set citation alerts
    Basudeb Sain, Cedrik Meier, Thomas Zentgraf. Nonlinear optics in all-dielectric nanoantennas and metasurfaces: a review[J]. Advanced Photonics, 2019, 1(2): 024002 Copy Citation Text show less
    References

    [1] T. H. Maiman. Stimulated optical radiation in ruby. Nature, 187, 493-494(1960).

    [2] P. A. Franken et al. Generation of optical harmonics. Phys. Rev. Lett., 7, 118-119(1961).

    [3] J. A. Armstrong et al. Interactions between light waves in a nonlinear dielectric. Phys. Rev., 127, 1918-1939(1962).

    [4] N. Bloembergen, P. S. Pershan. Light waves at the boundary of nonlinear media. Phys. Rev., 128, 606-622(1962).

    [5] P. N. Prasad, D. J. Williams. Introduction to Nonlinear Optical Effects in Molecules and Polymers(1991).

    [6] R. W. Boyd. Nonlinear Optics(2008).

    [7] N. I. Zheludev, Y. S. Kivshar. From metamaterials to metadevices. Nat. Mater., 11, 917-924(2012).

    [8] C. D. Giovampaola, N. Engheta. Digital metamaterials. Nat. Mater., 13, 1115-1121(2014).

    [9] Y. Xu, Y. Fu, H. Chen. Planar gradient metamaterials. Nat. Rev. Mater., 1, 16067(2016).

    [10] M. Lapine, I. V. Shadrivov, Y. S. Kivshar. Colloquium: nonlinear metamaterials. Rev. Mod. Phys., 86, 1093-1123(2014).

    [11] G. Li, S. Zhang, T. Zentgraf. Nonlinear photonic metasurfaces. Nat. Rev. Mater., 2, 17010(2017).

    [12] F. Monticone, A. Alù. Metamaterials and plasmonics: from nanoparticles to nanoantenna arrays, metasurfaces, and metamaterials. Chin. Phys. B, 23, 047809(2014).

    [13] A. Baev et al. Metaphotonics: an emerging field with opportunities and challenges. Phys. Rep., 594, 1-60(2015).

    [14] S. B. Glybovski et al. Metasurfaces: from microwaves to visible. Phys. Rep., 634, 1-72(2016).

    [15] A. E. Minovich et al. Functional and nonlinear optical metasurfaces. Laser Photonics Rev., 9, 195-213(2015).

    [16] A. Krasnok, M. Tymchenko, A. Alù. Nonlinear metasurfaces: a paradigm shift in nonlinear optics. Mater. Today, 21, 8-21(2018).

    [17] S. Keren-Zur et al. Shaping light with nonlinear metasurfaces. Adv. Opt. Photonics, 10, 309(2018).

    [18] M. Kauranen, A. V. Zayats. Nonlinear plasmonics. Nat. Photonics, 6, 737-748(2012).

    [19] V. Giannini et al. Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters. Chem. Rev., 111, 3888-3912(2011).

    [20] J. Y. Suh, T. W. Odom. Nonlinear properties of nanoscale antennas. Nano Today, 8, 469-479(2013).

    [21] S. B. Hasan, F. Lederer, C. Rockstuhl. Nonlinear plasmonic antennas. Mater. Today, 17, 478-485(2014).

    [22] N. Meinzer, W. L. Barnes, I. R. Hooper. Plasmonic meta-atoms and metasurfaces. Nat. Photonics, 8, 889-898(2014).

    [23] E. Almeida, Y. Prior. Rational design of metallic nanocavities for resonantly enhanced four-wave mixing. Sci. Rep., 5, 10033(2015).

    [24] G. Li et al. Continuous control of the nonlinearity phase for harmonic generations. Nat. Mater., 14, 607-612(2015).

    [25] E. Almeida, G. Shalem, Y. Prior. Subwavelength nonlinear phase control and anomalous phase matching in plasmonic metasurfaces. Nat. Commun., 7, 10367(2016).

    [26] C. Schlickriede et al. Imaging through nonlinear metalens using second harmonic generation. Adv. Mater., 30, 1703843(2018).

    [27] W. Ye et al. Spin and wavelength multiplexed nonlinear metasurface holography. Nat. Commun., 7, 11930(2016).

    [28] K. O’Brien et al. Predicting nonlinear properties of metamaterials from the linear response. Nat. Mater., 14, 379-383(2015).

    [29] T. Utikal et al. Towards the origin of the nonlinear response in hybrid plasmonic systems. Phys. Rev. Lett., 106, 133901(2011).

    [30] F. Walter et al. Ultrathin nonlinear metasurface for optical image encoding. Nano Lett., 17, 3171-3175(2017).

    [31] E. Almeida, O. Bitton, Y. Prior. Nonlinear metamaterials for holography. Nat. Commun., 7, 12533(2016).

    [32] A. V. Krasavin et al. Nonlocality-driven supercontinuum white light generation in plasmonic nanostructures. Nat. Commun., 7, 11497(2016).

    [33] H. Suchowski et al. Phase mismatch-free nonlinear propagation in optical zero-index materials. Science, 342, 1223-1226(2013).

    [34] M. Kauranen. Freeing nonlinear optics from phase matching. Science, 342, 1182-1183(2013).

    [35] H.-E. Ponath, T. F. Heinz, G. I. Stegeman. Second-order nonlinear optical effects at surfaces and interfaces. Nonlinear Surface Electromagnetic Phenomena, 353-416(1991).

    [36] G. S. Agarwa, S. S. Jha. Theory of second harmonic generation at a metal surface with surface plasmon excitation. Solid State Commun., 41, 499-501(1982).

    [37] J. I. Dadap et al. Second-harmonic Rayleigh scattering from a sphere of centrosymmetric material. Phys. Rev. Lett., 83, 4045-4048(1999).

    [38] C. Ciracì et al. Second-harmonic generation in metallic nanoparticles: clarification of the role of the surface. Phys. Rev. B, 86, 115451(2012).

    [39] A. Benedetti et al. Second harmonic generation from 3D nanoantennas: on the surface and bulk contributions by far-field pattern analysis. Opt. Express, 19, 26752-26767(2011).

    [40] Y. Zeng et al. Classical theory for second-harmonic generation from metallic nanoparticles. Phys. Rev. B, 79, 235109(2009).

    [41] P. Guyot-Sionnest, Y. R. Shen. Local and nonlocal surface nonlinearities for surface optical second-harmonic generation. Phys. Rev. B, 35, 4420-4426(1987).

    [42] S. Kujala et al. Multipole interference in the second-harmonic optical radiation from gold nanoparticles. Phys. Rev. Lett., 98, 167403(2007).

    [43] H. Husu et al. Metamaterials with tailored nonlinear optical response. Nano Lett., 12, 673-677(2012).

    [44] H. Tuovinen et al. Linear and second-order nonlinear optical properties of arrays of noncentrosymmetric gold nanoparticles. J. Nonlinear Opt. Phys. Mater., 11, 421-432(2002).

    [45] R. Czaplicki et al. Dipole limit in second-harmonic generation from arrays of gold nanoparticles. Opt. Express, 19, 26866-26871(2011).

    [46] R. Czaplicki et al. Second-harmonic generation from metal nanoparticles: resonance enhancement versus particle geometry. Nano Lett., 15, 530-534(2015).

    [47] L. J. Black et al. Tailoring second-harmonic generation in single L-shaped plasmonic nanoantennas from the capacitive to conductive coupling regime. ACS Photonics, 2, 1592-1601(2015).

    [48] V. K. Valev et al. Plasmonic ratchet wheels: switching circular dichroism by arranging chiral nanostructures. Nano Lett., 9, 3945-3948(2009).

    [49] V. K. Valev et al. Asymmetric optical second-harmonic generation from chiral G-shaped gold nanostructures. Phys. Rev. Lett., 104, 127401(2010).

    [50] V. K. Valev et al. Plasmons reveal the direction of magnetization in nickel nanostructures. ACS Nano, 5, 91-96(2011).

    [51] E. A. Mamonov et al. Anisotropy versus circular dichroism in second harmonic generation from fourfold symmetric arrays of G-shaped nanostructures. Phys. Rev. B, 89, 121113(R)(2014).

    [52] V. K. Valev. Characterization of nanostructured plasmonic surfaces with second harmonic generation. Langmuir, 28, 15454-15471(2012).

    [53] N. Feth et al. Second-harmonic generation from complementary split-ring resonators. Opt. Lett., 33, 1975-1977(2008).

    [54] B. Wang et al. Nonlinear properties of split-ring resonators. Opt. Express, 16, 16058-16063(2008).

    [55] M. W. Klein et al. Experiments on second- and third-harmonic generation from magnetic metamaterials. Opt. Express, 15, 5238-5247(2007).

    [56] Y. Dai et al. Nonlinear phenomena of left-handed nonlinear split-ring resonators. Optik, 125, 4484-4487(2014).

    [57] J. Butet, O. J. F. Martin. Evaluation of the nonlinear response of plasmonic metasurfaces: Miller’s rule, nonlinear effective susceptibility method, and full-wave computation. J. Opt. Soc. Am. B, 33, A8-A15(2016).

    [58] F. B. P. Niesler et al. Second-harmonic optical spectroscopy on split-ring-resonator arrays. Opt. Lett., 36, 1533(2011).

    [59] M. Danckwerts, L. Novotny. Optical frequency mixing at coupled gold nanoparticles. Phys. Rev. Lett., 98, 026104(2007).

    [60] B. K. Canfield et al. Local field asymmetry drives second-harmonic generation in noncentrosymmetric nanodimers. Nano Lett., 7, 1251-1255(2007).

    [61] Y. Zhang et al. Three-dimensional nanostructures as highly efficient generators of second harmonic light. Nano Lett., 11, 5519-5523(2011).

    [62] B. Metzger, M. Hentschel, H. Giessen. Ultrafast nonlinear plasmonic spectroscopy: from dipole nanoantennas to complex hybrid plasmonic structures. ACS Photonics, 3, 1336-1350(2016).

    [63] S. D. Gennaro et al. The interplay of symmetry and scattering phase in second harmonic generation from gold nanoantennas. Nano Lett., 16, 5278-5285(2016).

    [64] M. Celebrano et al. Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation. Nat. Nanotechnol., 10, 412-417(2015).

    [65] H. Aouani et al. Multiresonant broadband optical antennas as efficient tunable nanosources of second harmonic light. Nano Lett., 12, 4997-5002(2012).

    [66] L. Wang et al. Plasmon-enhanced spectral changes in surface sum-frequency generation with polychromatic light. Opt. Express, 21, 14159-14168(2013).

    [67] S. Bai et al. Chip-scale plasmonic sum frequency generation. IEEE Photonics J., 9, 4800108(2017).

    [68] A. C. Lesina, L. Ramunno, P. Berini. Dual-polarization plasmonic metasurface for nonlinear optics. Opt. Lett., 40, 2874-2877(2015).

    [69] S. Lepeshov et al. Enhancement of terahertz photoconductive antenna operation by optical nanoantennas. Laser Photonics Rev., 11, 1600199(2017).

    [70] M. Tymchenko et al. Highly-efficient THz generation using nonlinear plasmonic metasurfaces. J. Opt., 19, 104001(2017).

    [71] T. H. J. Loughran et al. Enhancing the magneto-optical Kerr effect through the use of a plasmonic antenna. Opt. Express, 26, 4738-4750(2018).

    [72] F. J. Diaz et al. Kerr effect in hybrid plasmonic waveguides. J. Opt. Soc. Am. B, 33, 957-692(2016).

    [73] G. Li, C. M. De Sterke, S. Palomba. Fundamental limitations to the ultimate Kerr nonlinear performance of plasmonic waveguides. ACS Photonics, 5, 1034-1040(2018).

    [74] H. Liu et al. Linear and nonlinear Fano resonance on two-dimensional magnetic metamaterials. Phys. Rev. B, 84, 235437(2011).

    [75] H. Aouani et al. Third-harmonic-upconversion enhancement from a single semiconductor nanoparticle coupled to a plasmonic antenna. Nat. Nanotechnol., 9, 290-294(2014).

    [76] B. Metzger et al. Third harmonic mechanism in complex plasmonic fano structures. ACS Photonics, 1, 471-476(2014).

    [77] S. Chen et al. Symmetry-selective third-harmonic generation from plasmonic metacrystals. Phys. Rev. Lett., 113, 033901(2014).

    [78] G. Li et al. Spin and geometric phase control four-wave mixing from metasurfaces. Laser Photonics Rev., 12, 1800034(2018).

    [79] J. Renger et al. Surface-enhanced nonlinear four-wave mixing. Phys. Rev. Lett., 104, 046803(2010).

    [80] P.-Y. Chen, A. Alù. Subwavelength imaging using phase-conjugating nonlinear nanoantenna arrays. Nano Lett., 11, 5514-5518(2011).

    [81] S. Palomba et al. Optical negative refraction by four-wave mixing in thin metallic nanostructures. Nat. Mater., 11, 34-38(2012).

    [82] Y. Zhang et al. Coherent Fano resonances in a plasmonic nanocluster enhance optical four-wave mixing. Proc. Natl. Acad. Sci. U.S.A., 110, 9215-9219(2013).

    [83] A. Rose et al. Circular dichroism of four-wave mixing in nonlinear metamaterials. Phys. Rev. B, 88, 195148(2013).

    [84] S. Kim et al. High-harmonic generation by resonant plasmon field enhancement. Nature, 453, 757-760(2008).

    [85] N. Segal et al. Controlling light with metamaterial-based nonlinear photonic crystals. Nat. Photonics, 9, 180-184(2015).

    [86] Y. Kivshar, A. Miroshnichenko. Meta-optics with Mie resonances. Opt. Photonics News, 28, 24(2017).

    [87] A. I. Kuznetsov et al. Magnetic light. Sci. Rep., 2, 492(2012).

    [88] Q. Zhao et al. Mie resonance-based dielectric metamaterials. Mater. Today, 12, 60-69(2009).

    [89] D. Smirnova, Y. S. Kivshar. Multipolar nonlinear nanophotonics. Optica, 3, 1241-1255(2016).

    [90] C. F. Bohren, D. R. Huffman. Absorption and Scattering of Light by Small Particles(1983).

    [91] A. I. Kuznetsov et al. Optically resonant dielectric nanostructures. Science, 354, aag2472(2016).

    [92] J. C. Ginn et al. Realizing optical magnetism from dielectric metamaterials. Phys. Rev. Lett., 108, 097402(2012).

    [93] Y. H. Fu et al. Directional visible light scattering by silicon nanoparticles. Nat. Commun., 4, 1527(2013).

    [94] B. S. Luk’Yanchuk et al. Optimum forward light scattering by spherical and spheroidal dielectric nanoparticles with high refractive index. ACS Photonics, 2, 993-999(2015).

    [95] A. B. Evlyukhin, C. Reinhardt, B. N. Chichkov. Multipole light scattering by nonspherical nanoparticles in the discrete dipole approximation. Phys. Rev. B, 84, 235429(2011).

    [96] M. A. van de Haar et al. Controlling magnetic and electric dipole modes in hollow silicon nanocylinders. Opt. Express, 24, 2047-2064(2016).

    [97] J. Zhang, K. F. MacDonald, N. I. Zheludev. Near-infrared trapped mode magnetic resonance in an all-dielectric metamaterial. Opt. Express, 21, 26721-26728(2013).

    [98] V. Savinov, V. A. Fedotov, N. I. Zheludev. Toroidal dipolar excitation and macroscopic electromagnetic properties of metamaterials. Phys. Rev. B, 89, 205112(2014).

    [99] N. A. Butakov, J. A. Schuller. Designing multipolar resonances in dielectric metamaterials. Sci. Rep., 6, 38487(2016).

    [100] J. D. Jackson. Classical Electrodynamics(1999).

    [101] L. Cao et al. Engineering light absorption in semiconductor nanowire devices. Nat. Mater., 8, 643-647(2009).

    [102] L. Cao et al. Tuning the color of silicon nanostructures. Nano Lett., 10, 2649-2654(2010).

    [103] M. Kerker, D.-S. Wang, C. L. Giles. Electromagnetic scattering by magnetic spheres. J. Opt. Soc. Am., 73, 765-767(1983).

    [104] B. García-Cámara et al. Nanoparticles with unconventional scattering properties: size effects. Opt. Commun., 283, 490-496(2010).

    [105] M. Nieto-Vesperinas, R. Gomez-Medina, J. J. Saenz. Angle-suppressed scattering and optical forces on submicrometer dielectric particles. J. Opt. Soc. Am. A, 28, 54-60(2011).

    [106] R. Gómez-Medina. Electric and magnetic dipolar response of germanium nanospheres: interference effects, scattering anisotropy, and optical forces. J. Nanophotonics, 5, 053512(2011).

    [107] J. M. Geffrin et al. Magnetic and electric coherence in forward-and back-scattered electromagnetic waves by a single dielectric subwavelength sphere. Nat. Commun., 3, 1171(2012).

    [108] S. Person et al. Demonstration of zero optical backscattering from single nanoparticles. Nano Lett., 13, 1806-1809(2013).

    [109] A. E. Krasnok et al. Superdirective dielectric nanoantennas. Nanoscale, 6, 7354-7361(2014).

    [110] R. Alaee et al. A generalized Kerker condition for highly directive nanoantennas. Opt. Lett., 40, 2645-2648(2015).

    [111] D. A. Smirnova et al. Multipolar third-harmonic generation driven by optically induced magnetic resonances. ACS Photonics, 3, 1468-1476(2016).

    [112] R. Camacho-Morales et al. Nonlinear generation of vector beams from AlGaAs nanoantennas. Nano Lett., 16, 7191-7197(2016).

    [113] M. F. Limonov et al. Fano resonances in photonics. Nat. Photonics, 11, 543-554(2017).

    [114] Y. Yang et al. All-dielectric metasurface analogue of electromagnetically induced transparency. Nat. Commun., 5, 5753(2014).

    [115] A. E. Miroshnichenko et al. Nonradiating anapole modes in dielectric nanoparticles. Nat. Commun., 6, 8069(2015).

    [116] T. Feng et al. Ideal magnetic dipole scattering. Phys. Rev. Lett., 118, 173901(2017).

    [117] W. Liu, Y. S. Kivshar. Multipolar interference effects in nanophotonics. Philos. Trans. R. Soc. London Ser. A, 375, 20160317(2017).

    [118] N. Papasimakis et al. Electromagnetic toroidal excitations in matter and free space. Nat. Mater., 15, 263-271(2016).

    [119] W. Liu et al. Elusive pure anapole excitation in homogenous spherical nanoparticles with radial anisotropy. J. Nanomater., 2015, 672957(2015).

    [120] L. Wang et al. Shaping the third-harmonic radiation from silicon nanodimers. Nanoscale, 9, 2201-2206(2017).

    [121] M. R. Shcherbakov et al. Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response. Nano Lett., 14, 6488-6492(2014).

    [122] D. P. Briggs et al. Nonlinear fano-resonant dielectric metasurfaces. Nano Lett., 15, 7388-7393(2015).

    [123] A. S. Shorokhov et al. Multifold enhancement of third-harmonic generation in dielectric nanoparticles driven by magnetic Fano resonances. Nano Lett., 16, 4857-4861(2016).

    [124] M. R. Shcherbakov et al. Nonlinear interference and tailorable third-harmonic generation from dielectric oligomers. ACS Photonics, 2, 578-582(2015).

    [125] W. Tong et al. Enhanced third harmonic generation in a silicon metasurface using trapped mode. Opt. Express, 24, 19661-19670(2016).

    [126] S. V. Makarov et al. Self-adjusted all-dielectric metasurfaces for deep ultraviolet femtosecond pulse generation. Nanoscale, 8, 17809-17814(2016).

    [127] G. Grinblat et al. Enhanced third harmonic generation in single germanium nanodisks excited at the anapole mode. Nano Lett., 16, 4635-4640(2016).

    [128] G. Grinblat et al. Efficient third harmonic generation and nonlinear subwavelength imaging at a higher-order anapole mode in a single germanium nanodisk. ACS Nano, 11, 953-960(2017).

    [129] G. Grinblat et al. Degenerate four-wave mixing in a multiresonant germanium nanodisk. ACS Photonics, 4, 2144-2149(2017).

    [130] L. Wang et al. Nonlinear wavefront control with all-dielectric metasurfaces. Nano Lett., 18, 3978-3984(2018).

    [131] S. Kruk et al. Enhanced magnetic second-harmonic generation from resonant metasurfaces. ACS Photonics, 2, 1007-1012(2015).

    [132] S. Liu et al. Resonantly enhanced second-harmonic generation using III-V semiconductor all-dielectric metasurfaces. Nano Lett., 16, 5426-5432(2016).

    [133] S. Liu et al. An all-dielectric metasurface as a broadband optical frequency mixer. Nat. Commun., 9, 2507(2018).

    [134] V. F. Gili et al. Monolithic AlGaAs second-harmonic nanoantennas. Opt. Express, 24, 15965-15971(2016).

    [135] J. Bar-David, U. Levy. Nonlinear diffraction in asymmetric dielectric metasurfaces. Nano Lett., 19, 1044-1051(2019).

    [136] C. Golla, N. Weber, C. Meier. Zinc oxide based dielectric nanoantennas for efficient nonlinear frequency conversion. J. Appl. Phys., 125, 073103(2019).

    [137] C. Koos et al. All-optical high-speed signal processing with silicon-organic hybrid slot waveguides. Nat. Photonics, 3, 216-219(2009).

    [138] K. Nozaki et al. Sub-femtojoule all-optical switching using a photonic-crystal nanocavity. Nat. Photonics, 4, 477-483(2010).

    [139] G. T. Reed et al. Silicon optical modulators. Nat. Photonics, 4, 518-526(2010).

    [140] J. Leuthold, C. Koos, W. Freude. Nonlinear silicon photonics. Nat. Photonics, 4, 535-544(2010).

    [141] G. A. Wurtz et al. Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality. Nat. Nanotechnol., 6, 107-111(2011).

    [142] K. F. MacDonald et al. Ultrafast active plasmonics. Nat. Photonics, 3, 55-58(2009).

    [143] I. M. Pryce et al. Highly strained compliant optical metamaterials with large frequency tunability. Nano Lett., 10, 4222-4227(2010).

    [144] J. Y. Ou et al. Giant nonlinearity of an optically reconfigurable plasmonic metamaterial. Adv. Mater., 28, 729-733(2016).

    [145] L. H. Nicholls et al. Ultrafast synthesis and switching of light polarization in nonlinear anisotropic metamaterials. Nat. Photonics, 11, 628-633(2017).

    [146] N. Rotenberg, M. Betz, H. M. Van Driel. Ultrafast all-optical coupling of light to surface plasmon polaritons on plain metal surfaces. Phys. Rev. Lett., 105, 017402(2010).

    [147] M. Ren et al. Nanostructured plasmonic medium for terahertz bandwidth all-optical switching. Adv. Mater., 23, 5540-5544(2011).

    [148] C. Lu et al. An actively ultrafast tunable giant slow-light effect in ultrathin nonlinear metasurfaces. Light Sci. Appl., 4, e302(2015).

    [149] H. Harutyunyan et al. Anomalous ultrafast dynamics of hot plasmonic electrons in nanostructures with hot spots. Nat. Nanotechnol., 10, 770-774(2015).

    [150] M. Abb et al. Hotspot-mediated ultrafast nonlinear control of multifrequency plasmonic nanoantennas. Nat. Commun., 5, 4869(2014).

    [151] P. Vasa et al. Real-time observation of ultrafast Rabi oscillations between excitons and plasmons in metal nanostructures with J-aggregates. Nat. Photonics, 7, 128-132(2013).

    [152] K. M. Dani et al. Sub-picosecond optical switching with a negative index metamaterial. Nano Lett., 9, 3565-3569(2009).

    [153] P. Guo et al. Ultrafast switching of tunable infrared plasmons in indium tin oxide nanorod arrays with large absolute amplitude. Nat. Photonics, 10, 267-273(2016).

    [154] S. Makarov et al. Tuning of magnetic optical response in a dielectric nanoparticle by ultrafast photoexcitation of dense electron-hole plasma. Nano Lett., 15, 6187-6192(2015).

    [155] M. R. Shcherbakov et al. Ultrafast all-optical switching with magnetic resonances in nonlinear dielectric nanostructures. Nano Lett., 15, 6985-6990(2015).

    [156] D. G. Baranov et al. Nonlinear transient dynamics of photoexcited resonant silicon nanostructures. ACS Photonics, 3, 1546-1551(2016).

    [157] D. G. Baranov et al. Tuning of near- and far-field properties of all-dielectric dimer nanoantennas via ultrafast electron-hole plasma photoexcitation. Laser Photonics Rev., 10, 1009-1015(2016).

    [158] P. D. Maker, R. W. Terhune. Study of optical effects due to an induced polarization third order in the electric field strength. Phys. Rev., 137, A801(1965).

    [159] G. Lüpke. Characterization of semiconductor interfaces by second-harmonic generation. Surf. Sci. Rep., 35, 75-161(1999).

    [160] S. Chen et al. Gigantic electric-field-induced second harmonic generation from an organic conjugated polymer enhanced by a band-edge effect. Light Sci. Appl., 8, 17(2019).

    [161] R. L. Sutherland. Handbook of Nonlinear Optics(2003).

    [162] E. Timurdogan et al. Electric field-induced second-order nonlinear optical effects in silicon waveguides. Nat. Photonics, 11, 200-206(2017).

    CLP Journals

    [1] Shijia Hua, Kang Du, Heng Wang, Wending Zhang, Ting Mei, Elhadj Dogheche. Affirming nonlinear optical coefficient constancy from z-scan measurement[J]. Chinese Optics Letters, 2020, 18(7): 071903

    [2] Yang Li, Zhijin Huang, Wentao Qiu, Jiangli Dong, Heyuan Guan, Huihui Lu. Recent progress of second harmonic generation based on thin film lithium niobate [Invited][J]. Chinese Optics Letters, 2021, 19(6): 060012

    [3] Yueqiang Hu, Xin Li, Xudong Wang, Jiajie Lai, Huigao Duan. Progress of micro-nano fabrication technologies for optical metasurfaces[J]. Infrared and Laser Engineering, 2020, 49(9): 20201035

    [4] Quan Xu, Xiaoqiang Su, Xueqian Zhang, Lijuan Dong, Lifeng Liu, Yunlong Shi, Qiu Wang, Ming Kang, Andrea Alù, Shuang Zhang, Jiaguang Han, Weili Zhang. Mechanically reprogrammable Pancharatnam–Berry metasurface for microwaves[J]. Advanced Photonics, 2022, 4(1): 016002

    [5] Yuechen Jia, Yingying Ren, Xingjuan Zhao, Feng Chen. Surface lattice resonances in dielectric metasurfaces for enhanced light-matter interaction [Invited][J]. Chinese Optics Letters, 2021, 19(6): 060013

    [6] Linpeng Gu, Liang Fang, Qingchen Yuan, Xuetao Gan, Hao Yang, Xutao Zhang, Juntao Li, Hanlin Fang, Vladislav Khayrudinov, Harri Lipsanen, Zhipei Sun, Jianlin Zhao. Nanowire-assisted microcavity in a photonic crystal waveguide and the enabled high-efficiency optical frequency conversions[J]. Photonics Research, 2020, 8(11): 1734

    Basudeb Sain, Cedrik Meier, Thomas Zentgraf. Nonlinear optics in all-dielectric nanoantennas and metasurfaces: a review[J]. Advanced Photonics, 2019, 1(2): 024002
    Download Citation