• Advanced Photonics
  • Vol. 1, Issue 2, 024002 (2019)
Basudeb Sain, Cedrik Meier, and Thomas Zentgraf*
Author Affiliations
  • University of Paderborn, Department of Physics, Paderborn, Germany
  • show less
    DOI: 10.1117/1.AP.1.2.024002 Cite this Article Set citation alerts
    Basudeb Sain, Cedrik Meier, Thomas Zentgraf, "Nonlinear optics in all-dielectric nanoantennas and metasurfaces: a review," Adv. Photon. 1, 024002 (2019) Copy Citation Text show less
    References

    [1] T. H. Maiman. Stimulated optical radiation in ruby. Nature, 187, 493-494(1960).

    [2] P. A. Franken et al. Generation of optical harmonics. Phys. Rev. Lett., 7, 118-119(1961).

    [3] J. A. Armstrong et al. Interactions between light waves in a nonlinear dielectric. Phys. Rev., 127, 1918-1939(1962).

    [4] N. Bloembergen, P. S. Pershan. Light waves at the boundary of nonlinear media. Phys. Rev., 128, 606-622(1962).

    [5] P. N. Prasad, D. J. Williams. Introduction to Nonlinear Optical Effects in Molecules and Polymers(1991).

    [6] R. W. Boyd. Nonlinear Optics(2008).

    [7] N. I. Zheludev, Y. S. Kivshar. From metamaterials to metadevices. Nat. Mater., 11, 917-924(2012).

    [8] C. D. Giovampaola, N. Engheta. Digital metamaterials. Nat. Mater., 13, 1115-1121(2014).

    [9] Y. Xu, Y. Fu, H. Chen. Planar gradient metamaterials. Nat. Rev. Mater., 1, 16067(2016).

    [10] M. Lapine, I. V. Shadrivov, Y. S. Kivshar. Colloquium: nonlinear metamaterials. Rev. Mod. Phys., 86, 1093-1123(2014).

    [11] G. Li, S. Zhang, T. Zentgraf. Nonlinear photonic metasurfaces. Nat. Rev. Mater., 2, 17010(2017).

    [12] F. Monticone, A. Alù. Metamaterials and plasmonics: from nanoparticles to nanoantenna arrays, metasurfaces, and metamaterials. Chin. Phys. B, 23, 047809(2014).

    [13] A. Baev et al. Metaphotonics: an emerging field with opportunities and challenges. Phys. Rep., 594, 1-60(2015).

    [14] S. B. Glybovski et al. Metasurfaces: from microwaves to visible. Phys. Rep., 634, 1-72(2016).

    [15] A. E. Minovich et al. Functional and nonlinear optical metasurfaces. Laser Photonics Rev., 9, 195-213(2015).

    [16] A. Krasnok, M. Tymchenko, A. Alù. Nonlinear metasurfaces: a paradigm shift in nonlinear optics. Mater. Today, 21, 8-21(2018).

    [17] S. Keren-Zur et al. Shaping light with nonlinear metasurfaces. Adv. Opt. Photonics, 10, 309(2018).

    [18] M. Kauranen, A. V. Zayats. Nonlinear plasmonics. Nat. Photonics, 6, 737-748(2012).

    [19] V. Giannini et al. Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters. Chem. Rev., 111, 3888-3912(2011).

    [20] J. Y. Suh, T. W. Odom. Nonlinear properties of nanoscale antennas. Nano Today, 8, 469-479(2013).

    [21] S. B. Hasan, F. Lederer, C. Rockstuhl. Nonlinear plasmonic antennas. Mater. Today, 17, 478-485(2014).

    [22] N. Meinzer, W. L. Barnes, I. R. Hooper. Plasmonic meta-atoms and metasurfaces. Nat. Photonics, 8, 889-898(2014).

    [23] E. Almeida, Y. Prior. Rational design of metallic nanocavities for resonantly enhanced four-wave mixing. Sci. Rep., 5, 10033(2015).

    [24] G. Li et al. Continuous control of the nonlinearity phase for harmonic generations. Nat. Mater., 14, 607-612(2015).

    [25] E. Almeida, G. Shalem, Y. Prior. Subwavelength nonlinear phase control and anomalous phase matching in plasmonic metasurfaces. Nat. Commun., 7, 10367(2016).

    [26] C. Schlickriede et al. Imaging through nonlinear metalens using second harmonic generation. Adv. Mater., 30, 1703843(2018).

    [27] W. Ye et al. Spin and wavelength multiplexed nonlinear metasurface holography. Nat. Commun., 7, 11930(2016).

    [28] K. O’Brien et al. Predicting nonlinear properties of metamaterials from the linear response. Nat. Mater., 14, 379-383(2015).

    [29] T. Utikal et al. Towards the origin of the nonlinear response in hybrid plasmonic systems. Phys. Rev. Lett., 106, 133901(2011).

    [30] F. Walter et al. Ultrathin nonlinear metasurface for optical image encoding. Nano Lett., 17, 3171-3175(2017).

    [31] E. Almeida, O. Bitton, Y. Prior. Nonlinear metamaterials for holography. Nat. Commun., 7, 12533(2016).

    [32] A. V. Krasavin et al. Nonlocality-driven supercontinuum white light generation in plasmonic nanostructures. Nat. Commun., 7, 11497(2016).

    [33] H. Suchowski et al. Phase mismatch-free nonlinear propagation in optical zero-index materials. Science, 342, 1223-1226(2013).

    [34] M. Kauranen. Freeing nonlinear optics from phase matching. Science, 342, 1182-1183(2013).

    [35] T. F. Heinz, H.-E. Ponath, G. I. Stegeman. Second-order nonlinear optical effects at surfaces and interfaces. Nonlinear Surface Electromagnetic Phenomena, 353-416(1991).

    [36] G. S. Agarwa, S. S. Jha. Theory of second harmonic generation at a metal surface with surface plasmon excitation. Solid State Commun., 41, 499-501(1982).

    [37] J. I. Dadap et al. Second-harmonic Rayleigh scattering from a sphere of centrosymmetric material. Phys. Rev. Lett., 83, 4045-4048(1999).

    [38] C. Ciracì et al. Second-harmonic generation in metallic nanoparticles: clarification of the role of the surface. Phys. Rev. B, 86, 115451(2012).

    [39] A. Benedetti et al. Second harmonic generation from 3D nanoantennas: on the surface and bulk contributions by far-field pattern analysis. Opt. Express, 19, 26752-26767(2011).

    [40] Y. Zeng et al. Classical theory for second-harmonic generation from metallic nanoparticles. Phys. Rev. B, 79, 235109(2009).

    [41] P. Guyot-Sionnest, Y. R. Shen. Local and nonlocal surface nonlinearities for surface optical second-harmonic generation. Phys. Rev. B, 35, 4420-4426(1987).

    [42] S. Kujala et al. Multipole interference in the second-harmonic optical radiation from gold nanoparticles. Phys. Rev. Lett., 98, 167403(2007).

    [43] H. Husu et al. Metamaterials with tailored nonlinear optical response. Nano Lett., 12, 673-677(2012).

    [44] H. Tuovinen et al. Linear and second-order nonlinear optical properties of arrays of noncentrosymmetric gold nanoparticles. J. Nonlinear Opt. Phys. Mater., 11, 421-432(2002).

    [45] R. Czaplicki et al. Dipole limit in second-harmonic generation from arrays of gold nanoparticles. Opt. Express, 19, 26866-26871(2011).

    [46] R. Czaplicki et al. Second-harmonic generation from metal nanoparticles: resonance enhancement versus particle geometry. Nano Lett., 15, 530-534(2015).

    [47] L. J. Black et al. Tailoring second-harmonic generation in single L-shaped plasmonic nanoantennas from the capacitive to conductive coupling regime. ACS Photonics, 2, 1592-1601(2015).

    [48] V. K. Valev et al. Plasmonic ratchet wheels: switching circular dichroism by arranging chiral nanostructures. Nano Lett., 9, 3945-3948(2009).

    [49] V. K. Valev et al. Asymmetric optical second-harmonic generation from chiral G-shaped gold nanostructures. Phys. Rev. Lett., 104, 127401(2010).

    [50] V. K. Valev et al. Plasmons reveal the direction of magnetization in nickel nanostructures. ACS Nano, 5, 91-96(2011).

    [51] E. A. Mamonov et al. Anisotropy versus circular dichroism in second harmonic generation from fourfold symmetric arrays of G-shaped nanostructures. Phys. Rev. B, 89, 121113(R)(2014).

    [52] V. K. Valev. Characterization of nanostructured plasmonic surfaces with second harmonic generation. Langmuir, 28, 15454-15471(2012).

    [53] N. Feth et al. Second-harmonic generation from complementary split-ring resonators. Opt. Lett., 33, 1975-1977(2008).

    [54] B. Wang et al. Nonlinear properties of split-ring resonators. Opt. Express, 16, 16058-16063(2008).

    [55] M. W. Klein et al. Experiments on second- and third-harmonic generation from magnetic metamaterials. Opt. Express, 15, 5238-5247(2007).

    [56] Y. Dai et al. Nonlinear phenomena of left-handed nonlinear split-ring resonators. Optik, 125, 4484-4487(2014).

    [57] J. Butet, O. J. F. Martin. Evaluation of the nonlinear response of plasmonic metasurfaces: Miller’s rule, nonlinear effective susceptibility method, and full-wave computation. J. Opt. Soc. Am. B, 33, A8-A15(2016).

    [58] F. B. P. Niesler et al. Second-harmonic optical spectroscopy on split-ring-resonator arrays. Opt. Lett., 36, 1533(2011).

    [59] M. Danckwerts, L. Novotny. Optical frequency mixing at coupled gold nanoparticles. Phys. Rev. Lett., 98, 026104(2007).

    [60] B. K. Canfield et al. Local field asymmetry drives second-harmonic generation in noncentrosymmetric nanodimers. Nano Lett., 7, 1251-1255(2007).

    [61] Y. Zhang et al. Three-dimensional nanostructures as highly efficient generators of second harmonic light. Nano Lett., 11, 5519-5523(2011).

    [62] B. Metzger, M. Hentschel, H. Giessen. Ultrafast nonlinear plasmonic spectroscopy: from dipole nanoantennas to complex hybrid plasmonic structures. ACS Photonics, 3, 1336-1350(2016).

    [63] S. D. Gennaro et al. The interplay of symmetry and scattering phase in second harmonic generation from gold nanoantennas. Nano Lett., 16, 5278-5285(2016).

    [64] M. Celebrano et al. Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation. Nat. Nanotechnol., 10, 412-417(2015).

    [65] H. Aouani et al. Multiresonant broadband optical antennas as efficient tunable nanosources of second harmonic light. Nano Lett., 12, 4997-5002(2012).

    [66] L. Wang et al. Plasmon-enhanced spectral changes in surface sum-frequency generation with polychromatic light. Opt. Express, 21, 14159-14168(2013).

    [67] S. Bai et al. Chip-scale plasmonic sum frequency generation. IEEE Photonics J., 9, 4800108(2017).

    [68] A. C. Lesina, L. Ramunno, P. Berini. Dual-polarization plasmonic metasurface for nonlinear optics. Opt. Lett., 40, 2874-2877(2015).

    [69] S. Lepeshov et al. Enhancement of terahertz photoconductive antenna operation by optical nanoantennas. Laser Photonics Rev., 11, 1600199(2017).

    [70] M. Tymchenko et al. Highly-efficient THz generation using nonlinear plasmonic metasurfaces. J. Opt., 19, 104001(2017).

    [71] T. H. J. Loughran et al. Enhancing the magneto-optical Kerr effect through the use of a plasmonic antenna. Opt. Express, 26, 4738-4750(2018).

    [72] F. J. Diaz et al. Kerr effect in hybrid plasmonic waveguides. J. Opt. Soc. Am. B, 33, 957-692(2016).

    [73] G. Li, C. M. De Sterke, S. Palomba. Fundamental limitations to the ultimate Kerr nonlinear performance of plasmonic waveguides. ACS Photonics, 5, 1034-1040(2018).

    [74] H. Liu et al. Linear and nonlinear Fano resonance on two-dimensional magnetic metamaterials. Phys. Rev. B, 84, 235437(2011).

    [75] H. Aouani et al. Third-harmonic-upconversion enhancement from a single semiconductor nanoparticle coupled to a plasmonic antenna. Nat. Nanotechnol., 9, 290-294(2014).

    [76] B. Metzger et al. Third harmonic mechanism in complex plasmonic fano structures. ACS Photonics, 1, 471-476(2014).

    [77] S. Chen et al. Symmetry-selective third-harmonic generation from plasmonic metacrystals. Phys. Rev. Lett., 113, 033901(2014).

    [78] G. Li et al. Spin and geometric phase control four-wave mixing from metasurfaces. Laser Photonics Rev., 12, 1800034(2018).

    [79] J. Renger et al. Surface-enhanced nonlinear four-wave mixing. Phys. Rev. Lett., 104, 046803(2010).

    [80] P.-Y. Chen, A. Alù. Subwavelength imaging using phase-conjugating nonlinear nanoantenna arrays. Nano Lett., 11, 5514-5518(2011).

    [81] S. Palomba et al. Optical negative refraction by four-wave mixing in thin metallic nanostructures. Nat. Mater., 11, 34-38(2012).

    [82] Y. Zhang et al. Coherent Fano resonances in a plasmonic nanocluster enhance optical four-wave mixing. Proc. Natl. Acad. Sci. U.S.A., 110, 9215-9219(2013).

    [83] A. Rose et al. Circular dichroism of four-wave mixing in nonlinear metamaterials. Phys. Rev. B, 88, 195148(2013).

    [84] S. Kim et al. High-harmonic generation by resonant plasmon field enhancement. Nature, 453, 757-760(2008).

    [85] N. Segal et al. Controlling light with metamaterial-based nonlinear photonic crystals. Nat. Photonics, 9, 180-184(2015).

    [86] Y. Kivshar, A. Miroshnichenko. Meta-optics with Mie resonances. Opt. Photonics News, 28, 24(2017).

    [87] A. I. Kuznetsov et al. Magnetic light. Sci. Rep., 2, 492(2012).

    [88] Q. Zhao et al. Mie resonance-based dielectric metamaterials. Mater. Today, 12, 60-69(2009).

    [89] D. Smirnova, Y. S. Kivshar. Multipolar nonlinear nanophotonics. Optica, 3, 1241-1255(2016).

    [90] C. F. Bohren, D. R. Huffman. Absorption and Scattering of Light by Small Particles(1983).

    [91] A. I. Kuznetsov et al. Optically resonant dielectric nanostructures. Science, 354, aag2472(2016).

    [92] J. C. Ginn et al. Realizing optical magnetism from dielectric metamaterials. Phys. Rev. Lett., 108, 097402(2012).

    [93] Y. H. Fu et al. Directional visible light scattering by silicon nanoparticles. Nat. Commun., 4, 1527(2013).

    [94] B. S. Luk’Yanchuk et al. Optimum forward light scattering by spherical and spheroidal dielectric nanoparticles with high refractive index. ACS Photonics, 2, 993-999(2015).

    [95] A. B. Evlyukhin, C. Reinhardt, B. N. Chichkov. Multipole light scattering by nonspherical nanoparticles in the discrete dipole approximation. Phys. Rev. B, 84, 235429(2011).

    [96] M. A. van de Haar et al. Controlling magnetic and electric dipole modes in hollow silicon nanocylinders. Opt. Express, 24, 2047-2064(2016).

    [97] J. Zhang, K. F. MacDonald, N. I. Zheludev. Near-infrared trapped mode magnetic resonance in an all-dielectric metamaterial. Opt. Express, 21, 26721-26728(2013).

    [98] V. Savinov, V. A. Fedotov, N. I. Zheludev. Toroidal dipolar excitation and macroscopic electromagnetic properties of metamaterials. Phys. Rev. B, 89, 205112(2014).

    [99] N. A. Butakov, J. A. Schuller. Designing multipolar resonances in dielectric metamaterials. Sci. Rep., 6, 38487(2016).

    [100] J. D. Jackson. Classical Electrodynamics(1999).

    [101] L. Cao et al. Engineering light absorption in semiconductor nanowire devices. Nat. Mater., 8, 643-647(2009).

    [102] L. Cao et al. Tuning the color of silicon nanostructures. Nano Lett., 10, 2649-2654(2010).

    [103] M. Kerker, D.-S. Wang, C. L. Giles. Electromagnetic scattering by magnetic spheres. J. Opt. Soc. Am., 73, 765-767(1983).

    [104] B. García-Cámara et al. Nanoparticles with unconventional scattering properties: size effects. Opt. Commun., 283, 490-496(2010).

    [105] M. Nieto-Vesperinas, R. Gomez-Medina, J. J. Saenz. Angle-suppressed scattering and optical forces on submicrometer dielectric particles. J. Opt. Soc. Am. A, 28, 54-60(2011).

    [106] R. Gómez-Medina. Electric and magnetic dipolar response of germanium nanospheres: interference effects, scattering anisotropy, and optical forces. J. Nanophotonics, 5, 053512(2011).

    [107] J. M. Geffrin et al. Magnetic and electric coherence in forward-and back-scattered electromagnetic waves by a single dielectric subwavelength sphere. Nat. Commun., 3, 1171(2012).

    [108] S. Person et al. Demonstration of zero optical backscattering from single nanoparticles. Nano Lett., 13, 1806-1809(2013).

    [109] A. E. Krasnok et al. Superdirective dielectric nanoantennas. Nanoscale, 6, 7354-7361(2014).

    [110] R. Alaee et al. A generalized Kerker condition for highly directive nanoantennas. Opt. Lett., 40, 2645-2648(2015).

    [111] D. A. Smirnova et al. Multipolar third-harmonic generation driven by optically induced magnetic resonances. ACS Photonics, 3, 1468-1476(2016).

    [112] R. Camacho-Morales et al. Nonlinear generation of vector beams from AlGaAs nanoantennas. Nano Lett., 16, 7191-7197(2016).

    [113] M. F. Limonov et al. Fano resonances in photonics. Nat. Photonics, 11, 543-554(2017).

    [114] Y. Yang et al. All-dielectric metasurface analogue of electromagnetically induced transparency. Nat. Commun., 5, 5753(2014).

    [115] A. E. Miroshnichenko et al. Nonradiating anapole modes in dielectric nanoparticles. Nat. Commun., 6, 8069(2015).

    [116] T. Feng et al. Ideal magnetic dipole scattering. Phys. Rev. Lett., 118, 173901(2017).

    [117] W. Liu, Y. S. Kivshar. Multipolar interference effects in nanophotonics. Philos. Trans. R. Soc. London Ser. A, 375, 20160317(2017).

    [118] N. Papasimakis et al. Electromagnetic toroidal excitations in matter and free space. Nat. Mater., 15, 263-271(2016).

    [119] W. Liu et al. Elusive pure anapole excitation in homogenous spherical nanoparticles with radial anisotropy. J. Nanomater., 2015, 672957(2015).

    [120] L. Wang et al. Shaping the third-harmonic radiation from silicon nanodimers. Nanoscale, 9, 2201-2206(2017).

    [121] M. R. Shcherbakov et al. Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response. Nano Lett., 14, 6488-6492(2014).

    [122] D. P. Briggs et al. Nonlinear fano-resonant dielectric metasurfaces. Nano Lett., 15, 7388-7393(2015).

    [123] A. S. Shorokhov et al. Multifold enhancement of third-harmonic generation in dielectric nanoparticles driven by magnetic Fano resonances. Nano Lett., 16, 4857-4861(2016).

    [124] M. R. Shcherbakov et al. Nonlinear interference and tailorable third-harmonic generation from dielectric oligomers. ACS Photonics, 2, 578-582(2015).

    [125] W. Tong et al. Enhanced third harmonic generation in a silicon metasurface using trapped mode. Opt. Express, 24, 19661-19670(2016).

    [126] S. V. Makarov et al. Self-adjusted all-dielectric metasurfaces for deep ultraviolet femtosecond pulse generation. Nanoscale, 8, 17809-17814(2016).

    [127] G. Grinblat et al. Enhanced third harmonic generation in single germanium nanodisks excited at the anapole mode. Nano Lett., 16, 4635-4640(2016).

    [128] G. Grinblat et al. Efficient third harmonic generation and nonlinear subwavelength imaging at a higher-order anapole mode in a single germanium nanodisk. ACS Nano, 11, 953-960(2017).

    [129] G. Grinblat et al. Degenerate four-wave mixing in a multiresonant germanium nanodisk. ACS Photonics, 4, 2144-2149(2017).

    [130] L. Wang et al. Nonlinear wavefront control with all-dielectric metasurfaces. Nano Lett., 18, 3978-3984(2018).

    [131] S. Kruk et al. Enhanced magnetic second-harmonic generation from resonant metasurfaces. ACS Photonics, 2, 1007-1012(2015).

    [132] S. Liu et al. Resonantly enhanced second-harmonic generation using III-V semiconductor all-dielectric metasurfaces. Nano Lett., 16, 5426-5432(2016).

    [133] S. Liu et al. An all-dielectric metasurface as a broadband optical frequency mixer. Nat. Commun., 9, 2507(2018).

    [134] V. F. Gili et al. Monolithic AlGaAs second-harmonic nanoantennas. Opt. Express, 24, 15965-15971(2016).

    [135] J. Bar-David, U. Levy. Nonlinear diffraction in asymmetric dielectric metasurfaces. Nano Lett., 19, 1044-1051(2019).

    [136] C. Golla, N. Weber, C. Meier. Zinc oxide based dielectric nanoantennas for efficient nonlinear frequency conversion. J. Appl. Phys., 125, 073103(2019).

    [137] C. Koos et al. All-optical high-speed signal processing with silicon-organic hybrid slot waveguides. Nat. Photonics, 3, 216-219(2009).

    [138] K. Nozaki et al. Sub-femtojoule all-optical switching using a photonic-crystal nanocavity. Nat. Photonics, 4, 477-483(2010).

    [139] G. T. Reed et al. Silicon optical modulators. Nat. Photonics, 4, 518-526(2010).

    [140] J. Leuthold, C. Koos, W. Freude. Nonlinear silicon photonics. Nat. Photonics, 4, 535-544(2010).

    [141] G. A. Wurtz et al. Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality. Nat. Nanotechnol., 6, 107-111(2011).

    [142] K. F. MacDonald et al. Ultrafast active plasmonics. Nat. Photonics, 3, 55-58(2009).

    [143] I. M. Pryce et al. Highly strained compliant optical metamaterials with large frequency tunability. Nano Lett., 10, 4222-4227(2010).

    [144] J. Y. Ou et al. Giant nonlinearity of an optically reconfigurable plasmonic metamaterial. Adv. Mater., 28, 729-733(2016).

    [145] L. H. Nicholls et al. Ultrafast synthesis and switching of light polarization in nonlinear anisotropic metamaterials. Nat. Photonics, 11, 628-633(2017).

    [146] N. Rotenberg, M. Betz, H. M. Van Driel. Ultrafast all-optical coupling of light to surface plasmon polaritons on plain metal surfaces. Phys. Rev. Lett., 105, 017402(2010).

    [147] M. Ren et al. Nanostructured plasmonic medium for terahertz bandwidth all-optical switching. Adv. Mater., 23, 5540-5544(2011).

    [148] C. Lu et al. An actively ultrafast tunable giant slow-light effect in ultrathin nonlinear metasurfaces. Light Sci. Appl., 4, e302(2015).

    [149] H. Harutyunyan et al. Anomalous ultrafast dynamics of hot plasmonic electrons in nanostructures with hot spots. Nat. Nanotechnol., 10, 770-774(2015).

    [150] M. Abb et al. Hotspot-mediated ultrafast nonlinear control of multifrequency plasmonic nanoantennas. Nat. Commun., 5, 4869(2014).

    [151] P. Vasa et al. Real-time observation of ultrafast Rabi oscillations between excitons and plasmons in metal nanostructures with J-aggregates. Nat. Photonics, 7, 128-132(2013).

    [152] K. M. Dani et al. Sub-picosecond optical switching with a negative index metamaterial. Nano Lett., 9, 3565-3569(2009).

    [153] P. Guo et al. Ultrafast switching of tunable infrared plasmons in indium tin oxide nanorod arrays with large absolute amplitude. Nat. Photonics, 10, 267-273(2016).

    [154] S. Makarov et al. Tuning of magnetic optical response in a dielectric nanoparticle by ultrafast photoexcitation of dense electron-hole plasma. Nano Lett., 15, 6187-6192(2015).

    [155] M. R. Shcherbakov et al. Ultrafast all-optical switching with magnetic resonances in nonlinear dielectric nanostructures. Nano Lett., 15, 6985-6990(2015).

    [156] D. G. Baranov et al. Nonlinear transient dynamics of photoexcited resonant silicon nanostructures. ACS Photonics, 3, 1546-1551(2016).

    [157] D. G. Baranov et al. Tuning of near- and far-field properties of all-dielectric dimer nanoantennas via ultrafast electron-hole plasma photoexcitation. Laser Photonics Rev., 10, 1009-1015(2016).

    [158] P. D. Maker, R. W. Terhune. Study of optical effects due to an induced polarization third order in the electric field strength. Phys. Rev., 137, A801(1965).

    [159] G. Lüpke. Characterization of semiconductor interfaces by second-harmonic generation. Surf. Sci. Rep., 35, 75-161(1999).

    [160] S. Chen et al. Gigantic electric-field-induced second harmonic generation from an organic conjugated polymer enhanced by a band-edge effect. Light Sci. Appl., 8, 17(2019).

    [161] R. L. Sutherland. Handbook of Nonlinear Optics(2003).

    [162] E. Timurdogan et al. Electric field-induced second-order nonlinear optical effects in silicon waveguides. Nat. Photonics, 11, 200-206(2017).

    CLP Journals

    [1] Shijia Hua, Kang Du, Heng Wang, Wending Zhang, Ting Mei, Elhadj Dogheche, "Affirming nonlinear optical coefficient constancy from z-scan measurement," Chin. Opt. Lett. 18, 071903 (2020)

    [2] Yang Li, Zhijin Huang, Wentao Qiu, Jiangli Dong, Heyuan Guan, Huihui Lu, "Recent progress of second harmonic generation based on thin film lithium niobate [Invited]," Chin. Opt. Lett. 19, 060012 (2021)

    [3] Yueqiang Hu, Xin Li, Xudong Wang, Jiajie Lai, Huigao Duan. Progress of micro-nano fabrication technologies for optical metasurfaces[J]. Infrared and Laser Engineering, 2020, 49(9): 20201035

    [4] Quan Xu, Xiaoqiang Su, Xueqian Zhang, Lijuan Dong, Lifeng Liu, Yunlong Shi, Qiu Wang, Ming Kang, Andrea Alù, Shuang Zhang, Jiaguang Han, Weili Zhang, "Mechanically reprogrammable Pancharatnam–Berry metasurface for microwaves," Adv. Photon. 4, 016002 (2022)

    [5] Linpeng Gu, Liang Fang, Qingchen Yuan, Xuetao Gan, Hao Yang, Xutao Zhang, Juntao Li, Hanlin Fang, Vladislav Khayrudinov, Harri Lipsanen, Zhipei Sun, Jianlin Zhao, "Nanowire-assisted microcavity in a photonic crystal waveguide and the enabled high-efficiency optical frequency conversions," Photonics Res. 8, 1734 (2020)

    [6] Yuechen Jia, Yingying Ren, Xingjuan Zhao, Feng Chen, "Surface lattice resonances in dielectric metasurfaces for enhanced light-matter interaction [Invited]," Chin. Opt. Lett. 19, 060013 (2021)