• Journal of Inorganic Materials
  • Vol. 36, Issue 4, 339 (2021)
Luchao SUN1, Xiaomin REN1、2, Tiefeng DU1, Yixiu LUO1, Jie ZHANG1, and Jingyang WANG1、*
Author Affiliations
  • 11. Advanced Ceramics and Composites Division, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
  • 22. School of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
  • show less
    DOI: 10.15541/jim20200611 Cite this Article
    Luchao SUN, Xiaomin REN, Tiefeng DU, Yixiu LUO, Jie ZHANG, Jingyang WANG. High Entropy Engineering: New Strategy for the Critical Property Optimizations of Rare Earth Silicates[J]. Journal of Inorganic Materials, 2021, 36(4): 339 Copy Citation Text show less
    References

    [1] H TSAI M, W YEH J. High-entropy alloys: a critical review. Materials Research Letters, 2, 107-123(2014).

    [2] B MIRACLE D, N SENKOV O. A critical review of high entropy alloys and related concepts. Acta Materialia, 122, 448-511(2017).

    [3] W YEH J, K CHEN S, J LIN S et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Advanced Engineering Materials, 6, 299-303(2004).

    [4] K HUANG P, W YEH J, T SHUN T et al. Multi-principal-element alloys with improved oxidation and wear resistance for thermal spray coating. Advanced Engineering Materials, 6, 74-78(2004).

    [5] J TONG C, L CHEN Y, K CHEN S et al. Microstructure characterization of AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metallurgical and Materials Transactions A, 36, 881-893(2005).

    [6] Y ZHANG, T ZUO T, Z TANG et al. Microstructures and properties of high-entropy alloys. Progress in Materials Science, 61, 1-93(2014).

    [7] S MURTY B, W YEH J, S RANGANATHAN. High-entropy Alloys. London: Elsevier(2014).

    [8] Y ZHANG, T ZUO T, Q CHENG Y et al. High-entropy alloys with high saturation magnetization, electrical resistivity, and malleability. Scientific Reports, 3, 1-7(2013).

    [9] H CHUANG M, H TSAI M, R WANG W et al. Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high entropy alloys. Acta Materialia, 59, 6308-6317(2011).

    [10] C JIANG S, T HU, J GILD et al. A new class of high-entropy perovskite oxides. Scripta Materialia, 142, 116-120(2018).

    [11] H TSAI M. Physical properties of high entropy alloys. Entropy, 15, 5338-5345(2013).

    [13] W YEH J. Recent progress in high-entropy alloys. Annales De Chimie-Science des Materiaux, 31, 633-648(2006).

    [14] B MIRACLE D. High-entropy alloys: a current evaluation of founding ideas and core effects and exploring “nonlinear alloys”. JOM, 69, 2130-2136(2017).

    [15] M ROST C, E SACHET, T BORMAN et al. Entropy-stabilized oxides. Nature Communications, 6, 8485(2015).

    [16] R CHELLALI M, A SARKAR, H NANDAM S et al. On the homogeneity of high entropy oxides: an investigation at the atomic scale. Scripta Materialia, 166, 58-63(2019).

    [17] R DJENADIC, A SARKAR, O CLEMENS et al. Multicomponent equiatomic rare earth oxides. Materials Research Letters, 5, 102-109(2017).

    [18] D DUPUY A, X WANG, M SCHOENUNG J. Entropic phase transformation in nanocrystalline high entropy oxides. Materials Research Letters, 7, 60-67(2019).

    [19] J GILD, Y ZHANG Y, T HARRINGTON et al. High-entropy metal diborides: a new class of high-entropy materials and a new type of ultrahigh temperature ceramics. Scientific Reports, 6, 37946(2016).

    [20] L YAN X, L CONSTANTIN, F LU Y et al. (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramics with low thermal conductivity. Journal of the American Ceramic Society, 101, 4486-4491(2018).

    [21] H CHEN, M XIANG H, Z DAI F et al. High porosity and low thermal conductivity high entropy (Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)C. Journal of Materials Science & Technology, 35, 1700-1705(2019).

    [22] E CASTLE, T CSANADI, S GRASSO et al. Processing and properties of high-entropy ultra-high temperature carbides. Scientific Reports, 8, 8609(2018).

    [23] P SARKER, T HARRINGTON, C TOHER et al. High-entropy high-hardness metal carbides discovered by entropy descriptors. Nature Communications, 9, 4980(2018).

    [24] L YE B, Q WEN T, C NGUYEN M et al. First-principles study, fabrication and characterization of (Zr0.25Nb0.25Ti0.25V0.25)C high- entropy ceramics. Acta Materialia, 170, 15-23(2019).

    [25] J HARRINGTON T, J GILD, P SARKER et al. Phase stability and mechanical properties of novel high entropy transition metal carbides. Acta Materialia, 166, 271-280(2019).

    [26] L YE B, Q WEN T, H HUANG K et al. First-principles study, fabrication, and characterization of (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high- entropy ceramic. Journal of the American Ceramic Society, 102, 4344-4352(2019).

    [27] K WANG, L CHEN, G XU C et al. Microstructure and mechanical properties of (TiZrNbTaMo)C high-entropy ceramic. Journal of Materials Science & Technology, 39, 99-105(2020).

    [28] W ZHANG, L CHEN, G XU C et al. Densification, microstructure and mechanical properties of multicomponent (TiZrHfNbTaMo)C ceramic prepared by pressureless sintering. Journal of Materials Science & Technology, 72, 23-28(2021).

    [29] T JIN, H SANG X, R UNOCIC R et al. Mechanochemical- assisted synthesis of high-entropy metal nitride via a soft urea strategy. Advanced Materials, 30, 1707512(2018).

    [30] J GILD, J BRAUN, K KAUFMANN et al. A high-entropy silicide: (Mo0.2Nb0.2Ta0.2Ti0.2W0.2)Si2. Journal of Materiomics, 5, 337-343(2019).

    [31] F ZHAO Z, M XIANG H, Z DAI F et al. (TiZrHf)P2O7: an equimolar multicomponent or high entropy ceramic with good thermal stability and low thermal conductivity. Journal of Materials Science & Technology, 35, 2227-2231(2019).

    [32] C LIU Y, C JIA D, Y ZHOU et al. Zn0.1Ca0.1Sr0.4Ba0.4ZrO3: a non-equimolar multicomponent perovskite ceramic with low thermal conductivity. Journal of the European Ceramic Society, 40, 6272-6277(2020).

    [33] M ZHU D. Advanced Environmental Barrier Coatings for SiC/SiC Ceramic Matrix Composite Turbine Components. Engineered Ceramics: Current Status and Future Prospects, Hoboken, New Jersey: John Wiley & Sons, Inc(2016).

    [34] N LEE K, S FOX D, P BANSAL N. Rare earth silicate environmental barrier coatings for SiC/SiC composites and Si3N4 ceramics. Journal of the European Ceramic Society, 25, 1705-1715(2005).

    [36] X LUO Y, C SUN L, M WANG J et al. Tunable thermal properties in yttrium silicates switched by anharmonicity of low-frequency phonons. Journal of the European Ceramic Society, 38, 2043-2052(2018).

    [37] L POERSCHKE D, D HASS D, S EUSTIS et al. Stability and CMAS resistance of ytterbium-silicate/hafnate EBCs/TBC for SiC composites. Journal of the American Ceramic Society, 98, 278-286(2015).

    [38] Y DONG, K REN, H LU Y et al. High-entropy environmental barrier coating for the ceramic matrix composites. Journal of the European Ceramic Society, 39, 2574-2579(2019).

    [39] H CHEN, M XIANG H, Z DAI F et al. High entropy (Yb0.25Y0.25Lu0.25Er0.25)2SiO5 with strong anisotropy in thermal expansion. Journal of Materials Science & Technology, 36, 134-139(2020).

    [40] M REN X, L TIAN Z, J ZHANG et al. Equiatomic quaternary (Y1/4Ho1/4Er1/4Yb1/4)2SiO5 silicate: a perspective multifunctional thermal and environmental barrier coating material. Scripta Materialia, 168, 47-50(2019).

    [41] M RIDLEY, J GASKINS, P HOPKINS et al. Tailoring thermal properties of multi-component rare earth monosilicates. Acta Materialia, 195, 698-707(2020).

    [42] R TURCER L, A SENGUPTA, P PADTURE N. Low thermal conductivity in high-entropy rare-earth pyrosilicate solid-solutions for thermal environmental barrier coatings. Scripta Materialia, 191, 40-45(2021).

    [43] L POERSCHKE D, W JACKSON R, G LEVI C. Silicate deposit degradation of engineered coatings in gas turbines: progress toward models and materials solutions. Annual Review of Materials Research, 47, 297-330(2017).

    [44] J LIU, T ZHANG L, M LIU Q et al. Calcium-magnesium- aluminosilicate corrosion behaviors of rare-earth disilicates at 1400 ℃. Journal of the European Ceramic Society, 33, 3419-3428(2013).

    [45] L TIAN Z, M REN X, M LEI Y et al. Corrosion of RE2Si2O7 (RE=Y, Yb, and Lu) environmental barrier coating materials by molten calcium-magnesium-alumino-silicate glass at high temperatures. Journal of the European Ceramic Society, 39, 4245-4254(2019).

    [46] R TURCER L, R KRAUSE A, F GARCES H et al. Environmental-barrier coating ceramics for resistance against attack by molten calcia-magnesia-aluminosilicate (CMAS) glass: Part I, YAlO3 and γ-Y2Si2O7. Journal of the European Ceramic Society, 38, 3905-3913(2018).

    [47] R TURCER L, R KRAUSE A, F GARCES H et al. Environmental-barrier coating ceramics for resistance against attack by molten calcia-magnesia-aluminosilicate (CMAS) glass: Part II, β-Yb2Si2O7 and β-Sc2Si2O7. Journal of the European Ceramic Society, 38, 3914-3924(2018).

    [48] C SUN L, X LUO Y, L TIAN Z et al. High temperature corrosion of (Er0.25Tm0.25Yb0.25Lu0.25)2Si2O7 environmental barrier coating material subjected to water vapor and molten calcium-magnesium- aluminosilicate (CMAS). Corrosion Science, 175, 108881(2020).

    [49] J FELSCHE. The Crystal Chemistry of the Rare-earth Silicates. Rare Earths. Structure and Bonding, Vol 13. Berlin, Heidelberg: Springer(1973).

    [50] C SUN L, X LUO Y, M REN X et al. A multicomponent γ-type (Gd1/6Tb1/6Dy1/6Tm1/6Yb1/6Lu1/6)2Si2O7 disilicate with outstanding thermal stability. Materials Research Letters, 8, 424-430(2020).

    Luchao SUN, Xiaomin REN, Tiefeng DU, Yixiu LUO, Jie ZHANG, Jingyang WANG. High Entropy Engineering: New Strategy for the Critical Property Optimizations of Rare Earth Silicates[J]. Journal of Inorganic Materials, 2021, 36(4): 339
    Download Citation