• Photonic Sensors
  • Vol. 1, Issue 3, 210 (2011)
Asrul Izam AZMI1, Ian LEUNG1, Xiaobao CHEN2, Shaoling ZHOU2, Qing ZHU2, Kan GAO2, Paul CHILDS3, and Gangding PENG1、*
Author Affiliations
  • 1School of Electrical Engineering and Telecommunications, The University of New South Wales, NSW, 2052, Australia
  • 223rd Research Institute, China Electronic Technology Group Corporation, Shanghai, 200437, China
  • 3Department of Electronics, Tsinghua University, Beijing, 100084, China
  • show less
    DOI: 10.1007/s13320-011-0018-3 Cite this Article
    Asrul Izam AZMI, Ian LEUNG, Xiaobao CHEN, Shaoling ZHOU, Qing ZHU, Kan GAO, Paul CHILDS, Gangding PENG. Fiber Laser Based Hydrophone Systems[J]. Photonic Sensors, 2011, 1(3): 210 Copy Citation Text show less
    References

    [1] G. A. Cranch, P. J. Nash, and C. K. Kirkendall, “Large-scale remotely interrogated arrays of fiber-optic interferometric sensors for underwater acoustic applications,” IEEE Sens. J., vol. 3, no. 1, pp. 19-30, 2003.

    [2] F. Kullander and C. Vahlberg, “Towards a thin and lightweight fiber optic towed array sonar,” Arch. Acoust., vol. 30, no. 4, pp. 91-94, 2005.

    [3] P. J. Nash, G. A. Cranch, and D. J. Hill, “Large scale multiplexed fiber-optic arrays for geophysical applications,” in Proc. of SPIE, vol. 4202, pp. 55-65, 2000.

    [4] A. C. L. Wong, P. A. Childs, and G. D. Peng, “Spectrally-overlapped chirped fiber Bragg grating sensor system for simultaneous two-parameter sensing,” Meas. Sci. Technol., vol. 18, no. 12, pp. 3825-3832, 2007.

    [5] D. Tosi, M. Olivero, and G. Perrone, “Optical microphone with fiber Bragg grating and signal processing techniques,” in Proc. of SPIE, vol. 7098, pp. 70981E.1-70981E.11, 2008.

    [6] H. Jun, F. Li, H. Xiao, and Y. Liu, “Fiber Bragg grating sensor array system based on digital phase generated carrier demodulation and reference compensation method,” in Proc. of 1st Asia-Pacific Opt. Fiber Sensors Conf., Beijing, China, Nov. 7-9, pp. 1-4, 2008.

    [7] J. H. Cole, C. Sunderman, A. B. Tveten, C. Kirkendall, and A. Dandridge, “Preliminary investigation of air-included polymer coatings for enhanced sensitivity of fiber-optic acoustic sensors,” in Proc. 15th Optical Fiber Sensors Tech. Digest, Portland, USA, vol. 1, pp. 317-320, 2002.

    [8] C. C. Wang, D. D. Anthony, B. T. Alan, and A. M. Yurek, “Very high responsivity fiber optic hydrophones for commercial applications,” in Proc. of SPIE, vol. 2360, pp. 360-363, 1994.

    [9] S. Goodman, A. Tikhomirov, and S. Foster, “Pressure compensated distributed feedback fiber laser hydrophone,” in Proc. of SPIE, vol. 7004, pp. 700426, 2008.

    [10] Z. Wentao, L. Yuliang, L. Fang, and X. Hao, “Fiber laser hydrophone based on double diaphragms: theory and experiment,” IEEE J. Lightwave Technol., vol. 26, no. 10, pp. 1349-1352, 2008.

    [11] A. I. Azmi, D. Sen, and G. D. Peng, “Sensitivity enhancement in composite cavity fiber laser hydrophone,” IEEE J. Lightwave Technol., vol. 28, no. 12, pp. 1844-1850, 2010.

    [12] W. H. Loh and R. I. Laming, “1.55μm phase-shifted distributed feedback fiber laser,” Electron. Lett., vol. 31, no. 17, pp. 1440-1442, 1995.

    [13] E. Ronnekleiv, “Frequency and intensity noise of single frequency fiber Bragg grating lasers,” Opt. Fiber Technol., vol. 7, no. 3, pp. 206-235, 2001.

    [14] G. A. Cranch and P. J. Nash, “Optical fiber hydrophones,” in Lasers and Their Applications, 1st ed., vol. 3, C. E. Webb and J. D. C. Jones, Ed. Bristol, U.K.: IOP, 2003, pp. 1839-1880.

    [15] P. Varming, V. C. Lauridsen, J. H. Povlsen, J. B. Jensen, and M. Kristensen, “Design and fabrication of Bragg grating based DFB fiber lasers operating above 1610 nm,” in Proc. Optical Fiber Communication Conference, Baltimore, USA, vol. 3, pp. 17-19, 2000.

    [16] S. Ogita, Y. Kotaki, K. Kihara, M. Matsuda, H. Ishikawa, and H. Imai, “Dependence of spectral linewidth on cavity length and coupling coefficient in DFB laser,” Electron. Lett., vol. 24, no. 10, pp. 613-614, 1988.

    [17] E. Ronnekleiv, O. Hadeler, and G. Vienne, “Stability of an Er-Yb-doped fiber distributed-feedback laser with external reflections,” Opt. Lett., vol. 24, no. 9, pp. 617-619, 1999.

    [18] D. Yu. Stepanov, J. Canning, L. Poladian, R. Wyatt, G. Maxwell, R. Smith, and R. Kashyap, “Apodized distributed-feedback fiber laser,” Opt. Fiber Technol., vol. 5, no. 2, pp. 209-214, 1999.

    [19] A. I. Azmi, D. Sen, and G. D. Peng, “Output power and threshold gain of apodized DFB fiber laser,” in Proc. of SPIE, vol. 7386, pp. 73860K.1-73860K.11, 2009.

    [20] A. I. Azmi and G. D. Peng, “Performance analysis of apodized DFB fiber laser,” in Proc. of Photonics Global Conf. , Singapore, Dec. 8-11, pp. 1-4, 2008.

    [21] Y. Dai, X. Chen, J. Sun, Y. Yao, and S. Xie, “Dual-wavelength DFB fiber laser based on a chirped structure and the equivalent phase shift method,” IEEE Photonics Technol. Lett., vol. 18, no. 18, pp. 1964-1966, 2006.

    [22] X. Liu, “A novel dual-wavelength DFB fiber laser based on symmetrical FBG structure,” IEEE Photonics Technol. Lett., vol. 19, no. 9, pp. 632-634, 2007.

    [23] A. Tikhomirov and S. Foster, “DFB FL sensor cross-coupling reduction,” IEEE J. Lightwave Technol., vol. 25, no. 2, pp. 533-538, 2007.

    [24] H. Kogelnik and C. V. Shank, “Coupled-wave theory of distributed feedback lasers,” J. Appl. Phys., vol. 43, no. 5, pp. 2327-2335, 1972.

    [25] A. Yariv, Optical Electronics in Modern Communications, 5th ed., New York: Oxford University Press Inc., 1997, pp. 619-626.

    [26] N. Schunk and K. Petermann, “Numerical analysis of the feedback regimes for a single-mode semiconductor laser with external feedback,” IEEE J. Quantum Electron., vol. 24, no. 7, pp. 1242-1247, 1988.

    [27] S. Saito and Y. Yamamoto, “Direct observation of Lorentzian lineshape of semiconductor laser and linewidth reduction with external grating feedback,” Electron. Lett., vol. 17, no. 9, pp. 325-327, 1981.

    [28] L. Goldberg, A. Dandridge, R. O. Miles, T. G. Giallorenzi, and J. F. Weller, “Noise characteristics in line-narrowed semiconductor lasers with optical feedback,” Electron. Lett., vol. 17, no. 19, pp. 677-678, 1981.

    [29] R. Wyatt and W. J. Devlin, “10 kHz linewidth 1.5 μm InGaAsP external cavity laser with 55 nm tuning range,” Electron. Lett., vol. 19, no. 3, pp. 110-112, 1983.

    [30] D. Mehuys, M. Mittelstein, and A. Yariv, “Optimised Fabry-Perot (AlGa)As quantum-well lasers tunable over 105 nm,” Electron. Lett., vol. 25, no. 2, pp. 143-145, 1989.

    [31] A. Olsson and C. Tang, “Coherent optical interference effects in external-cavity semiconductor lasers,” IEEE J. Quantum Electron., vol. 17, no. 8, pp. 1320-1323, 1981.

    [32] J. Osmundsen and N. Gade, “Influence of optical feedback on laser frequency spectrum and threshold conditions,” IEEE J. Quantum Electron., vol. 19, no. 3, pp. 465-469, 1983.

    [33] G. B. Hocker, “Fiber-optic sensing of pressure and temperature,” Appl. Opt., vol. 18, no. 9, pp. 1445-1448, 1979.

    [34] S. Tanaka, H. Yokosuka, and N. Takahashi, “Temperature-stabilized fiber Bragg grating underwater acoustic sensor array using incoherent light,” in Proc. of SPIE, vol. 5855, pp. 699-702, 2005.

    [35] T. Sakoda and Y. Sonoda, “Measurement of low-frequency ultrasonic wave in water using an acoustic fiber sensor,” IEEE T Ultrason. Ferr., vol. 53, no. 4, pp 761-766, 2006.

    [36] B. O. Guan, Y. N. Tan, and H. Y. Tam, “Dual polarization fiber grating laser hydrophone,” Opt. Express, vol. 17. no. 22, pp. 19544-19550, 2009.

    [37] J. A. Bucaro, H. D. Dardy, and E. F. Carome, “Fiber-optic hydrophone,” J. Acoust. Soc. Am., vol. vol. 62, no. 5, pp. 1302-1304, 1977.

    [38] D. A. Jackson, R. Priest, A. Dandridge, and A. B. Tveten, “Elimination of drift in a single-node optical fiber interferometer using a piezoelectrically stretched coiled fiber,” Appl. Optics, vol. 19, no. 17, pp. 2926-2929, 1980.

    [39] A. Dandridge, A. Tveten, and T. Giallorenzi, “Homodyne demodulation scheme for fiber optic sensors using phase generated carrier,” IEEE J. Quantum Electron., vol. 18, no. 10, pp. 1647-1653, 1982.

    [40] J. Bush, A. Cekorich, and C. K. Kirkendall, “Multichannel interferometric demodulator,” in Proc. of SPIE, vol. 3180, pp. 19-29, 1997.

    [41] M. Milnes, A. Tikhomirov, S. Foster, and S. Goodman, “Fast four step digital demodulation for multiplexed fiber laser sensors,” in Proc. of SPIE, vol. 7004, pp. 700422.1-700422.5, 2008.

    [42] D. A. Jackson, A. D. Kersey, M. Corke, and J. D. C. Jones, “Pseudoheterodyne detection scheme for optical interferometers,” Electron. Lett., vol. 18, no. 25, pp. 1081-1083, 1982.

    [43] J. Cole, B. Danver, and J. Bucaro, “Syntheticheterodyne interferometric demodulation,” IEEE J. Quantum Electron., vol. 18, no. 4, pp. 694-697, 1982.

    [44] S. C. Huang and H. Lin, “Modified phase-generated carrier demodulation compensated for the propagation delay of the fiber,” Appl. Opt., vol. 46, no. 3, pp. 7594-7603, 2007.

    [45] Q. Shi, et al., “The stability and consistency analysis of optical seismometer system using phase generated carrier in field application,” in Proc. of SPIE, vol. 7508, pp. 75081M.1-75081M.9, 2009.

    [46] K. P. Koo, A. B. Tveten, and A. Dandridge, “Passive stabilization scheme for fiber interferometers using 3×3 fiber directional couplers,” Appl. Phys. Lett., vol. 41, no. 7, pp. 616-618, 1982.

    [47] D. A. Brown, C. B. Cameron, R. M. Keolian, D. L. Gardner, and S. L. Garrett, “A symmetric 3×3 coupler based demodulator for fiber optic interferometric sensors,” in Proc. of SPIE, vol. 1584, pp. 328-335, 1991.

    [48] D. J. Hill, B. Hodder, J. De Freitas, S. D. Thomas, and L. Hickey, “DFB fiber-laser sensor developments,” in Proc. of SPIE, vol. 5855, pp. 904-907, 2005.

    [49] J. H. Cole, C. Kirkendall, A. Dandridge, G. Cogdell, and T. G. Giallorenzi, “Twenty-five years of interferometric fiber optics acoustic sensors at the Naval Research Laboratory,” Washington Academic Science Journal, vol. 90, no. 3, pp. 40-57, 2004.

    Asrul Izam AZMI, Ian LEUNG, Xiaobao CHEN, Shaoling ZHOU, Qing ZHU, Kan GAO, Paul CHILDS, Gangding PENG. Fiber Laser Based Hydrophone Systems[J]. Photonic Sensors, 2011, 1(3): 210
    Download Citation