• Infrared and Laser Engineering
  • Vol. 51, Issue 5, 20210420 (2022)
Hao Wen, Yang Cao, and Yuchao Dang
Author Affiliations
  • School of Electrical and Electronic Engineering, Chongqing University of Technology, Chongqing 400054, China
  • show less
    DOI: 10.3788/IRLA20210420 Cite this Article
    Hao Wen, Yang Cao, Yuchao Dang. Research on DNN-NOMS decoding method of polarization code in wireless optical communication[J]. Infrared and Laser Engineering, 2022, 51(5): 20210420 Copy Citation Text show less
    DNN neural network model assisted system model for polarization code decoding
    Fig. 1. DNN neural network model assisted system model for polarization code decoding
    (8,4) factor diagram of polarization code BP decoding method
    Fig. 2. (8,4) factor diagram of polarization code BP decoding method
    (8,4) PE information transmission process of the processing unit of the polarization code
    Fig. 3. (8,4) PE information transmission process of the processing unit of the polarization code
    (8,4) Dense Tanner graph (a) and sparse Tanner graph (b) of polarization codes
    Fig. 4. (8,4) Dense Tanner graph (a) and sparse Tanner graph (b) of polarization codes
    (8,4) sparse neural network decoding structure of polarization codes
    Fig. 5. (8,4) sparse neural network decoding structure of polarization codes
    Structure diagram of DNN-NOMS neural network decoder
    Fig. 6. Structure diagram of DNN-NOMS neural network decoder
    Comparison of the decoding performance of the neural network model under different network layers
    Fig. 7. Comparison of the decoding performance of the neural network model under different network layers
    Evolution of loss function and training parameters
    Fig. 8. Evolution of loss function and training parameters
    Performance comparison of different BP decoding methods
    Fig. 9. Performance comparison of different BP decoding methods
    Performance comparison of decoding methods under different code rates
    Fig. 10. Performance comparison of decoding methods under different code rates
    Performance comparison of decoding methods under different turbulence intensities
    Fig. 11. Performance comparison of decoding methods under different turbulence intensities
    SymbolMeaning
    $ {r_{ji}} $Check the information passed from nodejto variable node i
    $ {q_{ij}} $Information passed from variable node i to verification node j
    $C{{(i)} }$Variable node iis the collection of adjacent verification nodes
    $V{{(j)/i} }$The combination of variable nodes adjacent to the check matrixj, in which the variable node i is removed
    $V{{(i)} }$Set of check nodes adjacent to variable node i
    ${i'}$${j'}$Variable node ${i'}$and check node ${j'}$ represent the next value transformed after iteration
    $ {u_i}(0) $The reception is a posteriori probability of Yicorresponding to codeword bit xi=0
    $ {u_i}(1) $The reception is a posteriori probability of Yi corresponding to codeword bit xi=1
    $ L(x) $Log likelihood ratio refers to the logarithm of the ratio of the probability of judging that the node is 0 to the probability of judging that the node is 1
    $ l $Represents the L-th hidden layer
    Table 1. Symbol meaning of NOMS decoding method
    ParameterValue
    Length of polar code1024/4096
    Code rate0.25/0.5/0.75
    Turbulence intensity0.09/1.193/49.725
    ModulationPPM
    Table 2. Simulation parameters
    Turbulence intensityNormalization factorOffset factorLoss1Loss2
    0.090.440.890.41110.2624
    1.1930.390.850.47230.2839
    49.72150.480.920.54260.3108
    Table 3. Calculation of optimal factor parameters under different turbulence intensity conditions
    Decoding methods operation type MS (40) OMS (40) DNN-NOMS (5)
    Addition/Subtraction $ {T_{{\text{MS}}}}\left( {2 N{{\log }_2}N} \right) $819200 $ {T_{{\text{OMS}}}}\left( {2 N{{\log }_2}N{\text{ + }}1} \right) $819240 $ TN\left( {2 N{{\log }_2}N{\text{ + }}1} \right) $102405
    Multiplication/Division $ {T_{{\text{MS}}}}\left( {2 N{{\log }_2}N} \right) $819200 $ {T_{{\text{OMS}}}}\left( {2 N{{\log }_2}N} \right) $819200 $ TN\left( {2 N{{\log }_2}N{\text{ + }}1} \right) $102405
    Compare $ {T_{{\text{MS}}}}\left( {2 N{{\log }_2}N} \right) $819200 $ {T_{{\text{OMS}}}}\left( {2 N{{\log }_2}N} \right) $819200 $ TN\left( {2 N{{\log }_2}N} \right) $102400
    Storage space--$ 4 N{\log _2}N $
    Table 4. Comparison of decoding complexity of different BP modified decoding methods
    Hao Wen, Yang Cao, Yuchao Dang. Research on DNN-NOMS decoding method of polarization code in wireless optical communication[J]. Infrared and Laser Engineering, 2022, 51(5): 20210420
    Download Citation