• Laser & Optoelectronics Progress
  • Vol. 59, Issue 18, 1800002 (2022)
Xun Qiu1, Qiuyue Fu1, Peng Wang1, Shaoxin Li2, and Ying Li2、*
Author Affiliations
  • 1School of Medical Technology, Guangdong Medical University, Dongguan 523808, Guangdong , China
  • 2School of Biomedical Engineering, Guangdong Medical University, Dongguan 523808, Guangdong , China
  • show less
    DOI: 10.3788/LOP202259.1800002 Cite this Article Set citation alerts
    Xun Qiu, Qiuyue Fu, Peng Wang, Shaoxin Li, Ying Li. Advances in Detection Methods of Pathogenic Bacteria Using Surface-Enhanced Raman Spectra[J]. Laser & Optoelectronics Progress, 2022, 59(18): 1800002 Copy Citation Text show less
    References

    [1] Shankar P R. Antimicrobial resistance: global report on surveillance[J]. Australasian Medical Journal, 7, 237(2014).

    [2] Andrei C, Moraillon A, Larquet E et al. SERS characterization of aggregated and isolated bacteria deposited on silver-based substrates[J]. Analytical and Bioanalytical Chemistry, 413, 1417-1428(2021).

    [3] Lorenz B, Wichmann C, Stöckel S et al. Cultivation-free Raman spectroscopic investigations of bacteria[J]. Trends in Microbiology, 25, 413-424(2017).

    [4] Hong W L, Karanja C W, Abutaleb N S et al. Antibiotic susceptibility determination within one cell cycle at single-bacterium level by stimulated Raman metabolic imaging[J]. Analytical Chemistry, 90, 3737-3743(2018).

    [5] Zhou X, Hu Z W, Yang D T et al. Bacteria detection: from powerful SERS to its advanced compatible techniques[J]. Advanced Science, 7, 2001739(2020).

    [6] Sloan A, Wang G H, Cheng K D. Traditional approaches versus mass spectrometry in bacterial identification and typing[J]. Clinica Chimica Acta, 473, 180-185(2017).

    [7] Puttaswamy S, Gupta S K, Regunath H et al. A comprehensive review of the present and future antibiotic susceptibility testing (AST) systems[J]. Archives of Clinical Microbiology, 9, 83(2018).

    [8] Nowicka A B, Czaplicka M, Szymborski T et al. Combined negative dielectrophoresis with a flexible SERS platform as a novel strategy for rapid detection and identification of bacteria[J]. Analytical and Bioanalytical Chemistry, 413, 2007-2020(2021).

    [9] Moskovits M. Persistent misconceptions regarding SERS[J]. Physical Chemistry Chemical Physics: PCCP, 15, 5301-5311(2013).

    [10] Jeanmaire D L, van Duyne R P. Surface Raman spectroelectrochemistry: part I. heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 84, 1-20(1977).

    [11] Yan Y C, Nie Y, An L Y et al. Improvement of surface-enhanced Raman scattering method for single bacterial cell analysis[J]. Frontiers in Bioengineering and Biotechnology, 8, 573777(2020).

    [12] Lee J, Hua B, Park S et al. Tailoring surface plasmons of high-density gold nanostar assemblies on metal films for surface-enhanced Raman spectroscopy[J]. Nanoscale, 6, 616-623(2014).

    [13] Yang F, Wen P, Zhang Z Q et al. Fabrication of flexible surface-enhanced Raman spectroscopy chip[J]. Chinese Journal of Lasers, 48, 0113001(2021).

    [14] Kahraman M, Yazici M M, Sahin F et al. Reproducible surface-enhanced Raman scattering spectra of bacteria on aggregated silver nanoparticles[J]. Applied Spectroscopy, 61, 479-485(2007).

    [15] Zhou H B, Yang D T, Ivleva N P et al. SERS detection of bacteria in water by in situ coating with Ag nanoparticles[J]. Analytical Chemistry, 86, 1525-1533(2014).

    [16] Ravindranath S P, Wang Y L, Irudayaraj J. SERS driven cross-platform based multiplex pathogen detection[J]. Sensors and Actuators B: Chemical, 152, 183-190(2011).

    [17] Li S, Xu L G, Ma W et al. Triple Raman label-encoded gold nanoparticle trimers for simultaneous heavy metal ion detection[J]. Small, 11, 3435-3439(2015).

    [18] Xing H J, Zhang J, Yin Z H et al. Carbon nanotube/silver used for highly sensitive self-calibrating Raman detection[J]. Acta Optica Sinica, 40, 1224001(2020).

    [19] Fan Z, Senapati D, Khan S A et al. Popcorn-shaped magnetic core-plasmonic shell multifunctional nanoparticles for the targeted magnetic separation and enrichment, label-free SERS imaging, and photothermal destruction of multidrug-resistant bacteria[J]. Chemistry-A European Journal, 19, 2839-2847(2013).

    [20] Chu H, Huang Y W, Zhao Y P. Silver nanorod arrays as a surface-enhanced Raman scattering substrate for foodborne pathogenic bacteria detection[J]. Applied Spectroscopy, 62, 922-931(2008).

    [21] Qiu L, Wang W Q, Zhang A W et al. Core-shell nanorod columnar array combined with gold nanoplate-nanosphere assemblies enable powerful in situ SERS detection of bacteria[J]. ACS Applied Materials & Interfaces, 8, 24394-24403(2016).

    [22] Jiang H, Zhang X, Li L S et al. Preparation and SERS properties of Au nano-particles with different sizes[J]. Micronanoelectronic Technology, 56, 107-110, 139(2019).

    [23] Ye X C, Zheng C, Chen J et al. Using binary surfactant mixtures to simultaneously improve the dimensional tunability and monodispersity in the seeded growth of gold nanorods[J]. Nano Letters, 13, 765-771(2013).

    [24] Wang P, Zhang W, Liang O et al. Giant optical response from graphene: plasmonic system[J]. ACS Nano, 6, 6244-6249(2012).

    [25] Yang D T, Zhou H B, Haisch C et al. Reproducible E. coli detection based on label-free SERS and mapping[J]. Talanta, 146, 457-463(2016).

    [26] Chen L Y, Mungroo N, Daikuara L et al. Label-free NIR-SERS discrimination and detection of foodborne bacteria by in situ synthesis of Ag colloids[J]. Journal of Nanobiotechnology, 13, 45(2015).

    [27] Chen X P, Tang M Q, Liu Y et al. Surface-enhanced Raman scattering method for the identification of methicillin-resistant Staphylococcus aureus using positively charged silver nanoparticles[J]. Mikrochimica Acta, 186, 102(2019).

    [28] Meng X Y, Wang H Y, Chen N et al. A graphene-silver nanoparticle-silicon sandwich SERS chip for quantitative detection of molecules and capture, discrimination, and inactivation of bacteria[J]. Analytical Chemistry, 90, 5646-5653(2018).

    [29] Premasiri W R, Chen Y, Williamson P M et al. Rapid urinary tract infection diagnostics by surface-enhanced Raman spectroscopy (SERS): identification and antibiotic susceptibilities[J]. Analytical and Bioanalytical Chemistry, 409, 3043-3054(2017).

    [30] Yang Y, Liang W W, Wang X H et al. Label-free and label based surface-enhanced Raman spectroscopy for bacteria detection[J]. Journal of Analytical Science, 35, 650-656(2019).

    [31] Liu Y, Zhou H B, Hu Z W et al. Label and label-free based surface-enhanced Raman scattering for pathogen bacteria detection: a review[J]. Biosensors and Bioelectronics, 94, 131-140(2017).

    [32] Cui L, Yang K, Zhou G W et al. Surface-enhanced Raman spectroscopy combined with stable isotope probing to monitor nitrogen assimilation at both bulk and single-cell level[J]. Analytical Chemistry, 89, 5793-5800(2017).

    [33] Chisanga M, Muhamadali H, Kimber R et al. Quantitative detection of isotopically enriched E. coli cells by SERS[J]. Faraday Discussions, 205, 331-343(2017).

    [34] Yang K, Li H Z, Zhu X et al. Rapid antibiotic susceptibility testing of pathogenic bacteria using heavy-water-labeled single-cell Raman spectroscopy in clinical samples[J]. Analytical Chemistry, 91, 6296-6303(2019).

    [35] Yi X F, Song Y Z, Xu X G et al. Development of a fast Raman-assisted antibiotic susceptibility test (FRAST) for the antibiotic resistance analysis of clinical urine and blood samples[J]. Analytical Chemistry, 93, 5098-5106(2021).

    [36] Khan S A, Singh A K, Senapati D et al. Targeted highly sensitive detection of multi-drug resistant Salmonella DT104 using gold nanoparticles[J]. Chemical Communications, 47, 9444-9446(2011).

    [37] Yan S S, Liu C, Fang S Q et al. SERS-based lateral flow assay combined with machine learning for highly sensitive quantitative analysis of Escherichia coli O157: H7[J]. Analytical and Bioanalytical Chemistry, 412, 7881-7890(2020).

    [38] Duan N, Chang B Y, Zhang H et al. Salmonella typhimurium detection using a surface-enhanced Raman scattering-based aptasensor[J]. International Journal of Food Microbiology, 218, 38-43(2016).

    [39] Gao W C, Li B, Yao R Z et al. Intuitive label-free SERS detection of bacteria using aptamer-based in situ silver nanoparticles synthesis[J]. Analytical Chemistry, 89, 9836-9842(2017).

    [40] Ma X Y, Lin X C, Xu X M et al. Fabrication of gold/silver nanodimer SERS probes for the simultaneous detection of Salmonella typhimurium and Staphylococcus aureus[J]. Mikrochimica Acta, 188, 202(2021).

    [41] Wang J F, Wu X Z, Wang C W et al. Magnetically assisted surface-enhanced Raman spectroscopy for the detection of staphylococcus aureus based on aptamer recognition[J]. ACS Applied Materials & Interfaces, 7, 20919-20929(2015).

    [42] Zhang C, Wang C, Xiao R et al. Sensitive and specific detection of clinical bacteria via vancomycin-modified FeO@Au nanoparticles and aptamer-functionalized SERS tags[J]. Journal of Materials Chemistry B, 6, 3751-3761(2018).

    [43] Teixeira A M, Nemec A, Sousa C. Differentiation of taxonomically closely related species of the genus acinetobacter using Raman spectroscopy and chemometrics[J]. Molecules, 24, 168(2019).

    [44] Maquelin K, Choo-Smith L P, van Vreeswijk T et al. Raman spectroscopic method for identification of clinically relevant microorganisms growing on solid culture medium[J]. Analytical Chemistry, 72, 12-19(2000).

    [45] Bi L Y, Wang X, Cao X W et al. SERS-active Au@Ag core-shell nanorod (Au@AgNR) tags for ultrasensitive bacteria detection and antibiotic-susceptibility testing[J]. Talanta, 220, 121397(2020).

    [46] Liu S S, Li H H, Hassan M M et al. Amplification of Raman spectra by gold nanorods combined with chemometrics for rapid classification of four Pseudomonas[J]. International Journal of Food Microbiology, 304, 58-67(2019).

    [47] Yan S S, Wang S Y, Qiu J X et al. Raman spectroscopy combined with machine learning for rapid detection of food-borne pathogens at the single-cell level[J]. Talanta, 226, 122195(2021).

    [48] Zeng W D, Wang Q, Xia Z P et al[P].

    [49] Fang X L, Zeng Q Y, Yan X L et al. Fast discrimination of tumor and blood cells by label-free surface-enhanced Raman scattering spectra and deep learning[J]. Journal of Applied Physics, 129, 123103(2021).

    [50] Ho C S, Jean N, Hogan C A et al. Rapid identification of pathogenic bacteria using Raman spectroscopy and deep learning[J]. Nature Communications, 10, 4927(2019).

    [51] Ding J Y, Lin Q Q, Zhang J M et al. Rapid identification of pathogens by using surface-enhanced Raman spectroscopy and multi-scale convolutional neural network[J]. Analytical and Bioanalytical Chemistry, 413, 3801-3811(2021).

    [52] Jarvis R M, Goodacre R. Characterisation and identification of bacteria using SERS[J]. Chemical Society Reviews, 37, 931-936(2008).

    Xun Qiu, Qiuyue Fu, Peng Wang, Shaoxin Li, Ying Li. Advances in Detection Methods of Pathogenic Bacteria Using Surface-Enhanced Raman Spectra[J]. Laser & Optoelectronics Progress, 2022, 59(18): 1800002
    Download Citation