• Chinese Journal of Lasers
  • Vol. 50, Issue 16, 1602206 (2023)
Xinlong Liao, Boyong Su*, Shuo Xu, Guoran Hua, Heng Wang, and Yupeng Cao
Author Affiliations
  • School of Mechanical Engineering, Nantong University, Nantong 226019, Jiangsu, China
  • show less
    DOI: 10.3788/CJL221368 Cite this Article Set citation alerts
    Xinlong Liao, Boyong Su, Shuo Xu, Guoran Hua, Heng Wang, Yupeng Cao. Flow Law of Plastic Deformation of TC4 Titanium Alloy by Laser Shock Peening[J]. Chinese Journal of Lasers, 2023, 50(16): 1602206 Copy Citation Text show less
    References

    [1] Qian L Y, Wang Y H, Dai F Z et al. Laser shock processing and its effect on fatigue life of titanium alloys: a review[J]. China Surface Engineering, 35, 103-112(2022).

    [2] Yuan S, Lin N M, Zou J J et al. Effect of laser surface texturing (LST) on tribological behavior of double glow plasma surface zirconizing coating on Ti6Al4V alloy[J]. Surface and Coatings Technology, 368, 97-109(2019).

    [3] Lao X S, Zhao X F, Liu Y et al. Study on the friction characteristics of plasma spray modified layer on titanium alloy in artificial sea water environment[J]. Materials Science Forum, 990, 73-78(2020).

    [4] Cui Z D, Zhu J M, Jiang H et al. Research progress of the surface modification of titanium and titanium alloys for biomedical application[J]. Acta Metallurgica Sinica, 58, 837-856(2022).

    [5] Chen X P, Zhang L F, Xiong Y et al. Effect of laser shock peening on microstructure and properties of laser additive manufactured TC4 titanium alloy[J]. Chinese Journal of Lasers, 49, 1602017(2022).

    [6] Ananth M P, Ramesh R. Sliding wear characteristics of solid lubricant coating on titanium alloy surface modified by laser texturing and ternary hard coatings[J]. Transactions of Nonferrous Metals Society of China, 27, 839-847(2017).

    [7] Wang Y Z, Li F, Chen Y Y et al. TC4 shot peening simulation and experiment[J]. Journal of Beijing University of Aeronautics and Astronautics, 45, 1723-1731(2019).

    [8] Nie X F, Li Y H, He W F et al. Research progress and prospect of laser shock peening technology in aero-engine components[J]. Journal of Mechanical Engineering, 57, 293-305(2021).

    [9] Jiang Q H, Li S, Zhou C et al. Effects of laser shock peening on the ultra-high cycle fatigue performance of additively manufactured Ti6Al4V alloy[J]. Optics & Laser Technology, 144, 107391(2021).

    [10] Xu S, Su B Y, Hua G R et al. Effect of laser shock peening on the interfacial bonding properties of TiN coatings on TC4 titanium alloy[J]. Surface Technology, 51, 315-325(2022).

    [11] Hu Y X, Yao Z Q, Hu J. 3-D FEM simulation of laser shock processing[J]. Surface and Coatings Technology, 201, 1426-1435(2006).

    [12] Sealy M P, Guo Y B. Fabrication and finite element simulation of micro-laser shock peening for micro dents[J]. International Journal for Computational Methods in Engineering Science and Mechanics, 10, 134-142(2009).

    [13] Zhou W, Ge M Z, Wang T M et al. Effect of laser shock peening on surface integrity of GH3039 superalloys[J]. Laser & Optoelectronics Progress, 58, 0314001(2021).

    [14] Huang Z H, Liu H X, Shen Z B et al. Process parameters analysis on surface texturing under laser shock peening[J]. Chinese Journal of Lasers, 39, 0503004(2012).

    [15] Liu Y X, Wang X, Wu X Q et al. Surface morphology and deformation mechanism of 304 stainless steel treated by laser shock peening[J]. Chinese Journal of Lasers, 40, 0103004(2013).

    [16] Lu G X, Liu J D, Qiao H C et al. The local microscale reverse deformation of metallic material under laser shock[J]. Advanced Engineering Materials, 19, 1600672(2017).

    [17] Yang F H, Lu G X, Yang Q T et al. Research progress of laser shock treatment in the field of material forming[J]. Journal of Aeronautical Materials, 38, 1-10(2018).

    [18] Zhou W F, Ren X D, Yang Y et al. Dislocation behavior in nickel and iron during laser shock-induced plastic deformation[J]. The International Journal of Advanced Manufacturing Technology, 108, 1073-1083(2020).

    [19] Zbib H M, de la Rubia T D. A multiscale model of plasticity[J]. International Journal of Plasticity, 18, 1133-1163(2002).

    [20] Cheng G J, Shehadeh M A. Dislocation behavior in silicon crystal induced by laser shock peening: a multiscale simulation approach[J]. Scripta Materialia, 53, 1013-1018(2005).

    [21] Ding H, Li Y W, Zhang Z K et al. Analysis of microstructural evolution properties based on laser shock peening[J]. Optik, 179, 361-366(2019).

    [22] Gill A S, Telang A, Ye C et al. Localized plastic deformation and hardening in laser shock peened Inconel alloy 718SPF[J]. Materials Characterization, 142, 15-26(2018).

    [23] Johnson G R, Cook W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures[J]. Engineering Fracture Mechanics, 21, 31-48(1985).

    [24] Peyre P, Fabbro R, Merrien P et al. Laser shock processing of aluminium alloys. Application to high cycle fatigue behaviour[J]. Materials Science and Engineering: A, 210, 102-113(1996).

    [25] Zhang X Q, She J P, Li S Z et al. Simulation on deforming progress and stress evolution during laser shock forming with finite element method[J]. Journal of Materials Processing Technology, 220, 27-35(2015).

    [26] Yang H, Zhao J B, Wang T R. Research on a different method to reach the saturate limit of titanium aluminide alloy surface mechanical and fatigue properties by laser shock process[J]. Optik, 193, 162989(2019).

    [27] Ballard P, Fournier J, Fabbro R et al. Residual stresses induced by laser-shocks[J]. Le Journal De Physique IV, 1, C3-487(1991).

    [28] Wu X Q, Huang C G. Laser driven explosion and shock wave: a review[J]. High Power Laser and Particle Beams, 34, 42-60(2022).

    [29] Lu J Z, Wu L J, Sun G F et al. Microstructural response and grain refinement mechanism of commercially pure titanium subjected to multiple laser shock peening impacts[J]. Acta Materialia, 127, 252-266(2017).

    [30] Kaschel F R, Vijayaraghavan R K, Shmeliov A et al. Mechanism of stress relaxation and phase transformation in additively manufactured Ti-6Al-4V via in situ high temperature XRD and TEM analyses[J]. Acta Materialia, 188, 720-732(2020).

    [31] Wang B H, Cheng L, Li D C. Microstructure evolution and nanocrystal formation of TC4 by laser shock peening[J]. Chinese Journal of Lasers, 49, 0802019(2022).

    [32] Xue J, Feng J T, Ma C Z et al. Influence of laser shock peening on microstructure and oxidation resistance of laser additive manufactured TC4 titanium alloy[J]. Chinese Optics, 11, 198-205(2018).

    [33] Pu T Y, Liu W W, Wang Y L et al. A novel laser shock post-processing technique on the laser-induced damage resistance of 1ω HfO2/SiO2 multilayer coatings[J]. High Power Laser Science and Engineering, 9, e19(2021).

    Xinlong Liao, Boyong Su, Shuo Xu, Guoran Hua, Heng Wang, Yupeng Cao. Flow Law of Plastic Deformation of TC4 Titanium Alloy by Laser Shock Peening[J]. Chinese Journal of Lasers, 2023, 50(16): 1602206
    Download Citation