• Advanced Photonics
  • Vol. 5, Issue 1, 016006 (2023)
Asher Klug, Cade Peters, and Andrew Forbes*
Author Affiliations
  • University of the Witwatersrand, School of Physics, Wits, South Africa
  • show less
    DOI: 10.1117/1.AP.5.1.016006 Cite this Article Set citation alerts
    Asher Klug, Cade Peters, Andrew Forbes. Robust structured light in atmospheric turbulence[J]. Advanced Photonics, 2023, 5(1): 016006 Copy Citation Text show less
    References

    [1] A. Trichili et al. Communicating using spatial mode multiplexing: potentials, challenges, and perspectives. IEEE Commun. Surv. Tutorials, 21, 3175-3203(2019).

    [2] A. Trichili et al. Roadmap to free space optics. J. Opt. Soc. Am. B, 37, A184-A201(2020).

    [3] D. J. Richardson. Filling the light pipe. Science, 330, 327-328(2010).

    [4] D. Richardson, J. Fini, L. Nelson. Space-division multiplexing in optical fibres. Nat. Photonics, 7, 354-362(2013).

    [5] M. P. Lavery et al. Tackling Africa’s digital divide. Nat. Photonics, 12, 249-252(2018).

    [6] G. Li et al. Space-division multiplexing: the next frontier in optical communication. Adv. Opt. Photonics, 6, 413-487(2014).

    [7] S. Berdagué, P. Facq. Mode division multiplexing in optical fibers. Appl. Opt., 21, 1950-1955(1982).

    [8] A. Forbes, M. de Oliveira, M. R. Dennis. Structured light. Nat. Photonics, 15, 253-262(2021).

    [9] A. Forbes. Structured light: tailored for purpose. Opt. Photonics News, 31, 24-31(2020).

    [10] Y. Shen. Rays, waves, SU(2) symmetry and geometry: toolkits for structured light. J. Opt., 23, 124004(2021).

    [11] M. J. Padgett. Orbital angular momentum 25 years on. Opt. Express, 25, 11265-11274(2017).

    [12] G. Gibson, M. J. Courtial, J. Padgett. Free-space information transfer using light beams carrying orbital angular momentum. Opt. Express, 12, 5448-5456(2004).

    [13] J. Wang et al. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat. Photonics, 6, 488-496(2012).

    [14] A. E. Willner et al. Optical communications using orbital angular momentum beams. Adv. Opt. Photonics, 7, 66-106(2015).

    [15] A. E. Willner et al. Orbital angular momentum of light for communications. Appl. Phys. Rev., 8, 041312(2021).

    [16] Q. Zhan. Cylindrical vector beams: from mathematical concepts to applications. Adv. Opt. Photonics, 5, 1-57(2009).

    [17] C. Rosales-Guzmán, B. Ndagano, A. Forbes. A review of complex vector light fields and their applications. J. Opt., 20, 123001(2018).

    [18] E. Otte, C. Alpmann, C. Denz. Polarization singularity explosions in tailored light fields. Laser Photonics Rev., 12, 1700200(2018).

    [19] G. Milione et al. Gbit/s mode division multiplexing over free space using vector modes and a q-plate mode (de)multiplexer. Opt. Lett., 40, 1980-1983(2015).

    [20] A. Sit et al. High-dimensional intracity quantum cryptography with structured photons. Optica, 4, 1006-1010(2017).

    [21] I. Nape et al. Revealing the invariance of vectorial structured light in complex media. Nat. Photonics, 16, 538-546(2022).

    [22] K. Singh et al. A robust basis for multi-bit optical communication with vectorial light(2022).

    [23] J. A. Anguita, M. A. Neifeld, B. V. Vasic. Turbulence-induced channel crosstalk in an orbital angular momentum-multiplexed free-space optical link. Appl. Opt., 47, 2414-2429(2008).

    [24] Y. Ren et al. Experimental characterization of a 400 Gbit/s orbital angular momentum multiplexed free-space optical link over 120 m. Opt. Lett., 41, 622-625(2016).

    [25] M. Krenn et al. Communication with spatially modulated light through turbulent air across Vienna. New J. Phys., 16, 113028(2014).

    [26] Y. Zhao et al. Experimental demonstration of 260-meter security free-space optical data transmission using 16-QAM carrying orbital angular momentum (OAM) beams multiplexing, Th1H–3.(2016).

    [27] B. Rodenburg et al. Influence of atmospheric turbulence on states of light carrying orbital angular momentum. Opt. Lett., 37, 3735-3737(2012).

    [28] M. Krenn et al. Twisted light transmission over 143 km. Proc. Natl. Acad. Sci. U. S. A., 113, 13648-13653(2016).

    [29] L. Zhang et al. Mode-dependent crosstalk and detection probability of orbital angular momentum of optical vortex beam through atmospheric turbulence. J. Opt., 22, 075607(2020).

    [30] M. Malik et al. Influence of atmospheric turbulence on optical communications using orbital angular momentum for encoding. Opt. Express, 20, 13195-13200(2012).

    [31] C. Chen et al. Changes in orbital-angular-momentum modes of a propagated vortex gaussian beam through weak-to-strong atmospheric turbulence. Opt. Express, 24, 6959-6975(2016).

    [32] G. A. Tyler, R. W. Boyd. Influence of atmospheric turbulence on the propagation of quantum states of light carrying orbital angular momentum. Opt. Lett., 34, 142-144(2009).

    [33] C. Paterson. Atmospheric turbulence and orbital angular momentum of single photons for optical communication. Phys. Rev. Lett., 94, 153901(2005).

    [34] A. K. Jha, G. A. Tyler, R. W. Boyd. Effects of atmospheric turbulence on the entanglement of spatial two-qubit states. Phys. Rev. A, 81, 053832(2010).

    [35] A. Hamadou Ibrahim et al. Orbital-angular-momentum entanglement in turbulence. Phys. Rev. A, 88, 012312(2013).

    [36] C. Gopaul, R. Andrews. The effect of atmospheric turbulence on entangled orbital angular momentum states. New J. Phys., 9, 94(2007).

    [37] Y. Zhang et al. Experimentally observed decay of high-dimensional entanglement through turbulence. Phys. Rev. A, 94, 032310(2016).

    [38] B.-J. Pors et al. Transport of orbital-angular-momentum entanglement through a turbulent atmosphere. Opt. Express, 19, 6671-6683(2011).

    [39] S. K. Goyal et al. The effect of turbulence on entanglement-based free-space quantum key distribution with photonic orbital angular momentum. J. Opt., 18, 064002(2016).

    [40] N. D. Leonhard, V. N. Shatokhin, A. Buchleitner. Universal entanglement decay of photonic-orbital-angular-momentum qubit states in atmospheric turbulence. Phys. Rev. A, 91, 012345(2015).

    [41] G. Sorelli et al. Entanglement protection of high-dimensional states by adaptive optics. New J. Phys., 21, 023003(2019).

    [42] N. Mphuthi, R. Botha, A. Forbes. Are bessel beams resilient to aberrations and turbulence?. J. Opt. Soc. Am. A, 35, 1021-1027(2018).

    [43] N. Mphuthi et al. Free-space optical communication link with shape-invariant orbital angular momentum Bessel beams. Appl. Opt., 58, 4258-4264(2019).

    [44] I. P. Lukin. Mean intensity of vortex Bessel beams propagating in turbulent atmosphere. Appl. Opt., 53, 3287-3293(2014).

    [45] B.-S. Chen, J.-X. Pu. Propagation of Gauss–Bessel beams in turbulent atmosphere. Chin. Phys. B, 18, 1033(2009).

    [46] K. Zhu et al. Propagation of Bessel–Gaussian beams with optical vortices in turbulent atmosphere. Opt. Express, 16, 21315-21320(2008).

    [47] W. Nelson et al. Propagation of Bessel and Airy beams through atmospheric turbulence. J. Opt. Soc. Am. A, 31, 603-609(2014).

    [48] N. Ahmed et al. Mode-division-multiplexing of multiple Bessel–Gaussian beams carrying orbital-angular-momentum for obstruction-tolerant free-space optical and millimetre-wave communication links. Sci. Rep., 6, 22082(2016).

    [49] M. Cheng et al. Channel capacity of the OAM-based free-space optical communication links with Bessel–Gauss beams in turbulent ocean. IEEE Photonics J., 8, 7901411(2016).

    [50] T. Doster, A. T. Watnik. Laguerre–Gauss and Bessel–Gauss beams propagation through turbulence: analysis of channel efficiency. Appl. Opt., 55, 10239-10246(2016).

    [51] R. J. Watkins et al. Experimental probing of turbulence using a continuous spectrum of asymmetric OAM beams. Opt. Express, 28, 924-935(2020).

    [52] C. Vetter et al. Realization of free-space long-distance self-healing Bessel beams. Laser Photonics Rev., 13, 1900103(2019).

    [53] Y. Yuan et al. Beam wander relieved orbital angular momentum communication in turbulent atmosphere using Bessel beams. Sci. Rep., 7, 42276(2017).

    [54] M. A. Cox et al. The resilience of Hermite– and Laguerre–Gaussian modes in turbulence. J. Lightwave Technol., 37, 3911-3917(2019).

    [55] B. Ndagano et al. Comparing mode-crosstalk and mode-dependent loss of laterally displaced orbital angular momentum and Hermite–Gaussian modes for free-space optical communication. Opt. Lett., 42, 4175-4178(2017).

    [56] S. Restuccia et al. Comparing the information capacity of Laguerre–Gaussian and Hermite–Gaussian modal sets in a finite-aperture system. Opt. Express, 24, 27127-27136(2016).

    [57] A. Trichili et al. Optical communication beyond orbital angular momentum. Sci. Rep., 6, 27674(2016).

    [58] N. Zhao et al. Capacity limits of spatially multiplexed free-space communication. Nat. Photonics, 9, 822-826(2015).

    [59] Y. Zhou et al. Using all transverse degrees of freedom in quantum communications based on a generic mode sorter. Opt. Express, 27, 10383-10394(2019).

    [60] G. Xie et al. Experimental demonstration of a 200-Gbit/s free-space optical link by multiplexing Laguerre–Gaussian beams with different radial indices. Opt. Lett., 41, 3447-3450(2016).

    [61] L. Li et al. Power loss mitigation of orbital-angular-momentum-multiplexed free-space optical links using nonzero radial index Laguerre–Gaussian beams. J. Opt. Soc. Am. B, 34, 1-6(2017).

    [62] X. Gu, L. Chen, M. Krenn. Phenomenology of complex structured light in turbulent air. Opt. Express, 28, 11033-11050(2020).

    [63] A. Klug, I. Nape, A. Forbes. The orbital angular momentum of a turbulent atmosphere and its impact on propagating structured light fields. New J. Phys., 23, 093012(2021).

    [64] D. A. Miller. Better choices than optical angular momentum multiplexing for communications. Proc. Natl. Acad. Sci. U. S. A., 114, E9755-E9756(2017).

    [65] M. A. Cox et al. Structured light in turbulence. IEEE J. Sel. Top. Quantum Electron., 27, 7500521(2020).

    [66] Y. Gu, O. Korotkova, G. Gbur. Scintillation of nonuniformly polarized beams in atmospheric turbulence. Opt. Lett., 34, 2261-2263(2009).

    [67] W. Cheng, J. W. Haus, Q. Zhan. Propagation of vector vortex beams through a turbulent atmosphere. Opt. Express, 17, 17829-17836(2009).

    [68] Y. Cai et al. Average irradiance and polarization properties of a radially or azimuthally polarized beam in a turbulent atmosphere. Opt. Express, 16, 7665-7673(2008).

    [69] J.-X. Pu et al. Propagation of cylindrical vector beams in a turbulent atmosphere. Chin. Phys. B, 19, 089201(2010).

    [70] T. Wang, J. Pu. Propagation of non-uniformly polarized beams in a turbulent atmosphere. Opt. Commun., 281, 3617-3622(2008).

    [71] M. A. Cox et al. On the resilience of scalar and vector vortex modes in turbulence. Opt. Express, 24, 18105-18113(2016).

    [72] P. Lochab, P. Senthilkumaran, K. Khare. Designer vector beams maintaining a robust intensity profile on propagation through turbulence. Phys. Rev. A, 98, 023831(2018).

    [73] Z. Zhu et al. Compensation-free high-dimensional free-space optical communication using turbulence-resilient vector beams. Nat. Commun., 12, 1666(2021).

    [74] M. A. Cox et al. Modal diversity for robust free-space optical communications. Phys. Rev. Appl., 10, 024020(2018).

    [75] R. K. Tyson. Bit-error rate for free-space adaptive optics laser communications. J. Opt. Soc. Am. A, 19, 753-758(2002).

    [76] S. Zhao et al. Aberration corrections for free-space optical communications in atmosphere turbulence using orbital angular momentum states. Opt. Express, 20, 452-461(2012).

    [77] Y. Ren et al. Adaptive-optics-based simultaneous pre-and post-turbulence compensation of multiple orbital-angular-momentum beams in a bidirectional free-space optical link. Optica, 5, 376-382(2014).

    [78] C. He et al. Vectorial adaptive optics: correction of polarization and phase. Proc. SPIE, 11248, 1124808(2020).

    [79] M. Li, Y. Li, J. Han. Gerchberg–Saxton algorithm based phase correction in optical wireless communication. Phys. Commun., 25, 323-327(2017).

    [80] J. Liu et al. Deep learning based atmospheric turbulence compensation for orbital angular momentum beam distortion and communication. Opt. Express, 27, 16671-16688(2019).

    [81] D. A. Miller. Waves, modes, communications, and optics: a tutorial. Adv. Opt. Photonics, 11, 679-825(2019).

    [82] V. Shatokhin et al. Spatial eigenmodes of light in atmospheric turbulence. Proc. SPIE, 11532, 115320G(2020).

    [83] L. Borcea, J. Garnier, K. Sølna. Multimode communication through the turbulent atmosphere. J. Opt. Soc. Am. A, 37, 720-730(2020).

    [84] P. Pai et al. Scattering invariant modes of light in complex media. Nat. Photonics, 15, 431-434(2021).

    [85] P. Pai, J. Bosch, A. P. Mosk. Optical transmission matrix measurement sampled on a dense hexagonal lattice. OSA Contin., 3, 637-648(2020).

    [86] I. L. Chuang, M. A. Nielsen. Prescription for experimental determination of the dynamics of a quantum black box. J. Mod. Opt., 44, 2455-2467(1997).

    [87] E. Toninelli et al. Concepts in quantum state tomography and classical implementation with intense light: a tutorial. Adv. Opt. Photonics, 11, 67-134(2019).

    [88] N. H. Valencia et al. Unscrambling entanglement through a complex medium. Nat. Phys., 16, 1112-1116(2020).

    [89] B. Ndagano et al. Characterizing quantum channels with non-separable states of classical light. Nat. Phys., 13, 397-402(2017).

    [90] B. Ndagano, A. Forbes. Characterization and mitigation of information loss in a six-state quantum-key-distribution protocol with spatial modes of light through turbulence. Phys. Rev. A, 98, 062330(2018).

    [91] L. C. Andrews, R. L. Phillips. Laser Beam Propagation through Random Media(2005).

    [92] J. Schmidt. Numerical Simulation of Optical Wave Propagation with Examples in Matlab(2010).

    [93] L. Andrews. Laser Beam Propagation through Random Media(2005).

    [94] J. Pinnell et al. Modal analysis of structured light with spatial light modulators: a practical tutorial. J. Opt. Soc. Am. A, 37, C146-C160(2020).

    [95] T. Fahey et al. Laser beam atmospheric propagation modelling for aerospace lidar applications. Atmosphere, 12, 918(2021).

    [96] V. Arrizón et al. Pixelated phase computer holograms for the accurate encoding of scalar complex fields. J. Opt. Soc. Am. A, 24, 3500-3507(2007).

    [97] B. Rodenburg et al. Simulating thick atmospheric turbulence in the lab with application to orbital angular momentum communication. New J. Phys., 16, 033020(2014).

    [98] D. Lechner et al. Adaptable Shack–Hartmann wavefront sensor with diffractive lenslet arrays to mitigate the effects of scintillation. Opt. Express, 28, 36188-36205(2020).

    [99] J. D. Barchers, D. L. Fried, D. J. Link. Evaluation of the performance of Hartmann sensors in strong scintillation. Appl. Opt., 41, 1012-1021(2002).

    [100] D. Bachmann et al. Highly-transmitting modes of light in dynamic atmospheric turbulence(2022).

    Asher Klug, Cade Peters, Andrew Forbes. Robust structured light in atmospheric turbulence[J]. Advanced Photonics, 2023, 5(1): 016006
    Download Citation