• Chinese Journal of Quantum Electronics
  • Vol. 40, Issue 1, 112 (2023)
Yefeng HE1、2、*, Lina LI1, Qian BAI1, Sihao CHEN1, and Yuwei QIANG1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3969/j.issn.1007-5461.2023.01.013 Cite this Article
    HE Yefeng, LI Lina, BAI Qian, CHEN Sihao, QIANG Yuwei. Quantum key distribution of detector’s dead time in heralded single photon source[J]. Chinese Journal of Quantum Electronics, 2023, 40(1): 112 Copy Citation Text show less
    References

    [1] Bennett C H, Brassard G, Ekert A K. Quantum cryptography [J]. Scientific American, 1992, 267(4): 50-57.

    [2] Bennett C H, Brassard G. An update on quantum cryptography [C]. Workshop on theTheory and Application of Cryptographic Techniques. Springer, Berlin, Heidelberg, 1984: 475-480.

    [3] Makarov V. Controlling passively quenched single photon detectors by bright light [J]. New Journal of Physics, 2009, 11(6): 065003.

    [4] Zhao Y, Fung C H F, Qi B, et al. Quantum Hacking: Experimental demonstration of time-shift attack against practical quantum key distribution systems [OL]. 2007, arXiv: 0704.3253, https://arxiv.org/abs/0704.3253.

    [5] Makarov V, Skaar J. Faked states attack using detector efficiency mismatch on SARG04, phase-time, DPSK, and Ekert protocols [J]. Quantum Information&Computation, 2008, 8(6/7): 622-635.

    [6] Brassard G, Lutkenhaus N, Mor T, et al. Limitations on practical quantum cryptography [J]. Physical Review Letters, 2000, 85(6): 1330-1333.

    [7] Li H W, Wang S, Huang J Z, et al. Attacking practical quantum key distribution system with wavelength dependent beam splitter and multi-wavelength sources [OL]. 2011, arXiv: 1110.4574, https://arxiv.org/abs/1110.4574.

    [8] Qian Y J, He D Y, Wang S, et al. Hacking the quantum key distribution system by exploiting the avalanche-transition region of single-photon detectors [J]. Physical Review Applied, 2018, 10(6): 064062.

    [9] Lo H K, Curty M, Qi B. Measurement-device-independent quantum key distribution [OL]. 2011, arXiv: 1109.1473, https://arxiv.org/abs/1109.1473.

    [10] Wang C, Song X T, Yin Z Q, et al. Phase-reference-free experiment of measurement-device-independent quantum key distribution [J]. Physical Review Letters, 2015, 115(16): 160502.

    [11] Yan Y F, Zhou L, Zhong W, et al. Measurement-device-independent quantum key distribution of multiple degrees of freedom of a single photon [OL]. 2020, arXiv: 2009.09555, https://arxiv.org/abs/2009.09555.

    [12] Chao W, Qiang Y Z, Shuang W, et al. Measurement-device-independent quantum key distribution robust against environmental disturbances [J]. Optica, 2017, 4(9): 1016.

    [13] Yu W, Zhou Y Y, Zhou X J. Phase-matching decoy-state quantum key distribution scheme with weak coherent source [J]. Chinese Journal of Quantum Electronics, 2021, 38(1): 37-44.

    [14] Ye M, Xu L K, Huang G J, et al. Research on new device-independent quantum key distribution protocol [J]. Chinese Journal of Quantum Electronics, 2021, 38(1): 45-49.

    [15] He Y F, Li L N, Bai Q, et al. Performance analysis of multi-party measurement-device-independent quantum key distribution based on W states [J]. Laser & Optoelectronics Progress, 2021, 58(11): 363-369.

    [16] Wu C F, Du Y N, Wang J D, et al. Analysis on performance optimization in measurement-device-independent quantum key distribution using weak coherent states [J]. Acta Physica Sinica, 2016, 65(10): 19-27.

    [17] Fasel S, Alibart O, Beveratos A, et al. High quality asynchronous heralded single photon source at telecom wavelength [OL]. 2004, arXiv: quant-ph/0408136, https://arxiv.org/abs/quant-ph/0408136.

    [18] Zhu F, Wang Q. Quantum key distribution protocol based on heralded single photon source [J]. Acta Optica Sinica, 2014, 34(6): 0627002.

    [19] Zhang C H, Zhang C M, Guo G C, et al. Biased three-intensity decoy-state scheme on the measurement-device-independent quantum key distribution using heralded single-photon sources [J]. Optics Express, 2018, 2(4): 4219-4229.

    [20] Zhang C H, Zhang C M, Wang Q. Efficient passive measurement-device-independent quantum key distribution [OL]. 2019, arXiv: 1902.05243, https://arxiv.org/abs/1902.05243.

    [21] Zhou Y Y, Zhou X J, Su B B. A measurement-device-independent quantum key distribution protocol with a heralded single photon source [J]. Optoelectronics Letters, 2016, 12(2): 148-151.

    [22] Rogers D J, Bienfang J C, Nakassis A, et al. Detector dead-time effects and paralyzability in high-speed quantum key distribution [OL]. 2007, arXiv: 0706.1449, https://arxiv.org/abs/0706.1449.

    [23] Burenkov V, Qi B, Fortescue B, et al. Security of high speed quantum key distribution with finite detector dead time [OL]. 2010, arXiv: 1005.0272, https://arxiv.org/abs/1005.0272.

    [24] Ji Y M, Zhuang M L, Zhang G X, et al. High speed measurement device independent quantum key distribution with finite detection dead time [J]. Infrared and Laser Engineering, 2018, 47(S1): s122001.

    [25] Ma X F, Fung C H F, Razavi M. Statistical fluctuation analysis for measurement-device-independent quantum key distribution [J]. Physical Review A, 2012, 8(5): 052305.

    [26] He Y F, Zhao Y K, Li C Y, et al. Measurement-device-independent quantum key distribution of finite detector’s dead time in heralded pair coherent state [J]. Acta Optica Sinica, 2020, 40(24): 2427001.

    HE Yefeng, LI Lina, BAI Qian, CHEN Sihao, QIANG Yuwei. Quantum key distribution of detector’s dead time in heralded single photon source[J]. Chinese Journal of Quantum Electronics, 2023, 40(1): 112
    Download Citation