• Journal of Infrared and Millimeter Waves
  • Vol. 38, Issue 1, 15 (2019)
MA Guo-Wu*, HU Lin-Lin, ZHUO Ting-Ting, SUN Di-Min, HUANG Yin-Hu, CHEN Hong-Bin, and MENG Fan-Bao
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.11972/j.issn.1001-9014.2019.01.003 Cite this Article
    MA Guo-Wu, HU Lin-Lin, ZHUO Ting-Ting, SUN Di-Min, HUANG Yin-Hu, CHEN Hong-Bin, MENG Fan-Bao. Design of a TE34,10 mode cylindrical cavity for MW level gyrotron[J]. Journal of Infrared and Millimeter Waves, 2019, 38(1): 15 Copy Citation Text show less
    References

    [1] Nusinovich G S, Thumm M K A, Petelin M I. The Gyrotron at 50: Historical Overview[J]. Journal of Infrared Millimeter & Terahertz Waves, 2014, 35(4):325-381.

    [3] Gaponov A V, Flyagin V A, Goldenberg A L, et al. Powerful millimetre-wave gyrotrons[J]. International Journal of Electronics, 1981, 51(4):277-302.

    [4] Thumm M. Progress on Gyrotrons for ITER and Future Thermonuclear Fusion Reactors[J]. IEEE Transactions on Plasma Science, 2011, 39(4):971-979.

    [5] Litvak A, Sakamoto K, Thumm M. Innovation on high-power long-pulse gyrotrons[J]. Plasma Physics & Controlled Fusion, 2011, 53(12):124002.

    [6] Poli E, Tardini G, Zohm H, et al. Electron-cyclotron-current-drive efficiency in DEMO plasmas[J]. Nuclear Fusion, 2013, 53(1):013011.

    [7] Litvak A G, Denisov G G, Myasnikov V E, et al. Recent Development Results in Russia of Megawatt Power Gyrotrons for Plasma Fusion Installations[C]// EDP Sciences, 2012:04003.

    [8] Thumm M, Alberti S, Arnold A, et al. EU Megawatt-Class 140-GHz CW Gyrotron[J]. IEEE Transactions on Plasma Science, 2007, 35(2):143-153.

    [9] Sakamoto K, Kasugai A, Kajiwara K, et al. Progress of high power 170 GHz gyrotron in JAEA[J]. Nuclear Fusion, 2009, 49(9):095019.

    [10] Ikeda R, Oda Y, Kobayashi T, et al. Development of 170 GHz, 1 MW gyrotron with high-order TE 31,11, mode oscillation for ITER EC system[J]. Fusion Engineering & Design, 2018, 128:23-27.

    [11] Kajiwara K, Oda Y, Takahashi K, et al. Design and Operation of TE 31,12 High Power Gyrotron[J]. Fusion Science & Technology, 2013, 63(1T):35-39.

    [12] Kumar A, Kumar N, Singh U, et al. Towards a 1 MW, 170 GHz gyrotron design for fusion application[J]. Infrared Physics & Technology, 2013, 57(3):1-7.

    [13] Sakamoto K, Kariya T, Oda Y, et al. Study of sub-terahertz high power gyrotron for ECH&CD system of DEMO[C]// IEEE International Conference on Plasma Sciences. IEEE, 2015:1-1.

    [14] Kern S, Borie E, Illy S, et al. Theoretical study of 174 GHz operation of the W7-X 1 MW, 140 GHz gyrotron[C]// International Conference on Infrared, Millimeter and Terahertz Waves, California Institute of Technology Pasadena, California, USA, 2008:1-2.

    [15] Borie E, Jodicke B. Comments on the linear theory of the gyrotron[J]. IEEE Transactions on Plasma Science, 2002, 16(2):116-121.

    [16] Nusinovich G S. Introduction to the Physics of Gyrotrons[M]. Baltimore, MD: John Hopkins University Press, 2004, 62.

    [17] Fliflet A W, Read M E, Chu K R, et al. A self-consistent field theory for gyrotron oscillators: application to a low Q gyromonotron[J]. International Journal of Electronics, 1982, 53(6):505-521.

    [18] Fliflet A W, Lee R C, Gold S H, et al. Time-dependent multimode simulation of gyrotron oscillators[J]. Physical Review A, 1991, 43(11):6166-6176.

    [19] Gantenbein G, Borie E, Dumbrajs O, et al. Design of a high order volume mode cavity for a l MW/140GHz gyrotron[J]. International Journal of Electronics, 1995, 78(4):771-787.

    [20] Jackson, J.D. Classical Electrodynamics[M]. New York: John Wiley & sons, Inc., 1962, 36.

    MA Guo-Wu, HU Lin-Lin, ZHUO Ting-Ting, SUN Di-Min, HUANG Yin-Hu, CHEN Hong-Bin, MENG Fan-Bao. Design of a TE34,10 mode cylindrical cavity for MW level gyrotron[J]. Journal of Infrared and Millimeter Waves, 2019, 38(1): 15
    Download Citation