• Chinese Journal of Quantum Electronics
  • Vol. 28, Issue 1, 31 (2011)
Jian SUN* and Narenmandula
Author Affiliations
  • [in Chinese]
  • show less
    DOI: Cite this Article
    SUN Jian, Narenmandula. Multiple solitary wave solutions of variable coefficient forced Burgers equation and interaction of solitary waves[J]. Chinese Journal of Quantum Electronics, 2011, 28(1): 31 Copy Citation Text show less
    References

    [1] Ablowitz M J, Clarkson P A. Solitons Nonlinear Evolution Equations and Inverse Scattering [M]. Cambridge: Cambridge University Press, 1991.

    [4] Burgers J M. Mathematical examples illustrating relations occurring in the theory of turbulent fluid motion [J]. Trans. Roy. Neth. Acad. Sci. Amsterdam., 1939, 17(2): 1-53.

    [5] Wang Mingliang. Nonlinear Evolution Equations and Solitons [M]. Lanzhou: Lanzhou University Press, 1990.

    [8] Taogetusang, Sirendaoerji. The Jacobi elliptic function-like exact solutions to two kinds of KdV equations with variable coefficients and KdV equation with forcible term [J]. Chinese Physics, 2006, 15(12): 2809-2818.

    [11] Nimmo J J C, Crighton D G. Backlund transformations for nonlinear parabolic equations: the general results [J]. Proc. R. Soc. Lond. A, 1982, 384: 381-401.

    [12] Hong W P. On B cklund transformation for a generalized Burgers equation and solitonic solutions [J]. Phys. Lett. A, 2000, 268: 81-84.

    [13] Fusco D. Some comments on wave motion described by non-homogeneous quasi-linear first order hyperbolic systems [J]. Meccanica, 1982, 17: 128-137.

    [14] Ablowitz M J, De Lillo S. The Burgers equation under deterministic and stochastic forcing [J]. Physica D, 1996, 92: 245-259.

    [15] Gao Yitian, Xu Xiaoge, Tian Bo. Variable-coefficient forced burgers system in nonlinear fluid mechanics and its possibly observable effects [J]. International Journal of Modern Physics C, 2003, 14(9): 1207-1222.

    [16] Blatter G. Vortices in high-temperature superconductors [J]. Rev. Mod. Phys., 1994, 66: 1125-1128.

    [17] Godreche C. Solids Far from Equilibrium [M]. Cambridge: Cambridge University Press, 1992 .

    [18] Oliveri F. Painleve’ analysis and similarity solutions of Burgers equation with variable coefficients [J]. Journal of Engineering Mathematics, 1991, 25: 317-327.

    [19] Fusco D. Some comments on wave motion described by non-homgeneous quasi-linear first order hyperbolic systems [J]. Meccanica, 1982, 17: 128-137.

    [20] Doyle J, Englefield M J. Similarity solutions of a generalized Burgers equation [J]. IMA J. Appl. Math., 1990, 44: 145-153.

    [21] Wang Mingliang. Solitary wave solutions for variant Boussinesq equations [J]. Phys. Lett. A, 1995, 199: 169-172.

    [22] Wang Mingliang. Exact solutions for a compound KdV-Burgers equation [J]. Phys. Lett. A, 1996, 213: 279-287.

    SUN Jian, Narenmandula. Multiple solitary wave solutions of variable coefficient forced Burgers equation and interaction of solitary waves[J]. Chinese Journal of Quantum Electronics, 2011, 28(1): 31
    Download Citation