• Chinese Journal of Quantum Electronics
  • Vol. 39, Issue 6, 835 (2022)
Wenlin GONG1、*, Mingliang CHEN2, and Shensheng HAN2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3969/j.issn.1007-5461.2022.06.002 Cite this Article
    GONG Wenlin, CHEN Mingliang, HAN Shensheng. Research progress and prospect on ghost imaging lidar[J]. Chinese Journal of Quantum Electronics, 2022, 39(6): 835 Copy Citation Text show less
    References

    [1] Shapiro J H, Capron B A, Harney R C. Imaging and target detection with a heterodyne-reception optical radar[J]. Applied Optics, 1981, 20(19): 3292-3313.

    [2] Mcmanamon P, Buell W, Choi M, et al. Laser Radar: Progress and Opportunities in Active Electro-optical Sensing[M]. Washington, DC: The National Academy Press, 2014.

    [3] Bennink R S, Bentley S J, Boyd R W, et al. Quantum and classical coincidence imaging[J]. Physical Review Letters, 2004, 92(3): 033601.

    [4] Cheng J, Han S S. Incoherent coincidence imaging and its applicability in X-ray diffraction[J]. Physical Review Letters, 2004, 92(9): 093903.

    [5] D’Angelo M, Shih Y H. Quantum imaging[J]. Laser Physics Letters, 2005, 2(12): 567-596.

    [6] Shapiro J H, Boyd R W. The physics of ghost imaging[J]. Quantum Information Processing, 2012, 11(4): 949-993.

    [7] Pittman T B, Shih Y H, Strekalov D V, et al. Optical imaging by means of two-photon quantum entanglement[J]. Physical Review A, 1995, 52(5): R3429-R3432.

    [8] Bennink R S, Bentley S J, Boyd R W. “Two-Photon" coincidence imaging with a classical source[J]. Physical Review Letters, 2002, 89(11): 113601.

    [9] Gatti A, Brambilla E, Bache M, et al. Ghost imaging with thermal light: Comparing entanglement and classical correlation[J]. Physical Review Letters, 2004, 93(9): 093602.

    [10] Zhao C Q, Gong W L, Chen M L, et al. Ghost imaging lidar via sparsity constraints[J]. Applied Physics Letters, 2012, 101(14): 141123.

    [11] Gong W L, Zhao C Q, Yu H, et al. Three-dimensional ghost imaging lidar via sparsity constraint[J]. Scientific Reports, 2016, 6: 26133.

    [12] Guo H, Wei Z P, He R Y, et al. Imaging scheme of moving object based on temporal and spatial correlation[J]. Chinese Journal of Quantum Electronics, 2019, 36(4): 385-392.

    [13] Sun M J, Edgar M P, Gibson G M, et al. Single-pixel three-dimensional imaging with time-based depth resolution[J]. Nature Communications, 2016, 7: 12010.

    [14] Yu H, Lu R H, Han S S, et al. Fourier-transform ghost imaging with hard X rays[J]. Physical Review Letters, 2016, 117(11): 113901.

    [15] Zhang A X, He Y H, Wu L A, et al. Tabletop X-ray ghost imaging with ultra-low radiation[J]. Optica, 2018, 5(4): 374.

    [16] Chan W L, Charan K, Takhar D, et al. A single-pixel terahertz imaging system based on compressed sensing[J]. Applied Physics Letters, 2008, 93(12): 121105.

    [17] Liu H C, Zhang S. Computational ghost imaging of hot objects in long-wave infrared range[J]. Applied Physics Letters, 2017, 111(3): 031110.

    [18] Guo Y Y, He X Z, Wang D J. A novel super-resolution imaging method based on stochastic radiation radar array[J]. Measurement Science & Technology, 2013, 24(7): 074013.

    [19] Ryczkowski P, Barbier M, Friberg A T, et al. Ghost imaging in the time domain[J]. Nature Photonics, 2016, 10(3): 167-170.

    [20] Katz O, Bromberg Y, Silberberg Y. Compressive ghost imaging[J]. Applied Physics Letters, 2009, 95(13): 131110.

    [21] Du J, Gong W L, Han S S. The influence of sparsity property of images on ghost imaging with thermal light[J]. Optics Letters, 2012, 37(6): 1067-1069.

    [22] Gong W L, Han S S. High-resolution far-field ghost imaging via sparsity constraint[J]. Scientific Reports, 2015, 5: 9280.

    [23] Bina M, Magatti D, Molteni M, et al. Backscattering differential ghost imaging in turbid media[J]. Physical Review Letters, 2013, 110(8): 083901.

    [24] Gong W L, Han S S. Correlated imaging in scattering media[J]. Optics Letters, 2011, 36(3): 394-396.

    [25] Chen M L, Li E R, Gong W L, et al. Ghost imaging lidar via sparsity constraints in real atmosphere[J]. Optics and Photonics Journal, 2013, 3(2): 83-85.

    [26] Erkmen B I. Computational ghost imaging for remote sensing[J]. Journal of the Optical Society of America A, 2012, 29(5): 782-789.

    [27] Yang X, Zhang Y, Yang C H, et al. Heterodyne 3D ghost imaging[J]. Optics Communications, 2016, 368: 1-6.

    [28] Deng C J, Gong W L, Han S S. Pulse-compression ghost imaging lidar via coherent detection[J]. Optics Express, 2016, 24(23): 25983-25994.

    [29] Wang C L, Mei X D, Pan L, et al. Airborne near infrared three-dimensional ghost imaging LiDAR via sparsity constraint[J]. Remote Sensing, 2018, 10(5): 732.

    [30] Mei X D, Wang C L, Pan L, et al. Experimental demonstration of vehicle-borne near infrared three-dimensional ghost imaging LiDAR[C]. Conference on Lasers and Electro-Optics, 2019.

    [31] Liu X L, Shi J H, Sun L, et al. Photon-limited single-pixel imaging[J]. Optics Express, 2020, 28(6): 8132-8144.

    [32] Deng C J, Pan L, Wang C L, et al. Performance analysis of ghost imaging lidar in background light environment[J]. Photonics Research, 2017, 5(5): 431-435.

    [33] Pan L, Deng C J, Gong W L, et al. Influence of chirped-amplitude correlated imaging under incoherent detection[J]. Acta Optica Sinica, 2018, 38(10): 1011001.

    [34] Pan L, Deng C J, Bo Z W, et al. Experimental investigation of chirped amplitude modulation heterodyne ghost imaging[J]. Optics Express, 2020, 28(14): 20808-20816.

    [35] Pan L, Deng C J, Gong W L, et al. Experimental demonstration of pulse-compression ghost imaging via coherent detection[C]. Proceedings of SPIE, 2020, 11567: 201-204.

    [36] Gong W L, Zhang P L, Shen X, et al. Ghost “pinhole" imaging in Fraunhofer region[J]. Applied Physics Letters, 2009, 95(7): 071110.

    [37] http://defenseSystems.com/articles/2014/01/06/arl-quantum-ghost-imaging.aspx.

    [38] Gong W L, Zhao C Q, Jiao J, et al. Three-dimensional ghost imaging ladar[OL]. 2013, arXiv: 1301.5767, https://arxiv.org/abs/1301.5767.

    [39] Yang Y, Shi J H, Cao F, et al. Computational imaging based on time-correlated single-photon-counting technique at low light level[J]. Applied Optics, 2015, 54(31): 9277-9283.

    [40] Bo Z W, Gong W L, Yan Y, et al. Experimental research of ghost imaging based on photon counting[J]. Chinese Journal of Lasers, 2016, 43(11): 145-149.

    [41] Liu X L, Shi J H, Wu X Y, et al. Fast first-photon ghost imaging[J]. Scientific Reports, 2018, 8: 5012.

    [42] Li H, Xiong J, Zeng G H. Lensless ghost imaging for moving objects[J]. Optical Engineering, 2011, 50(12): 127005.

    [43] Zhang C, Gong W L, Han S S. Ghost imaging for moving targets and its application in remote sensing[J]. Chinese Journal of Lasers, 2012, 39(12): 210-216.

    [44] Li E R, Bo Z W, Chen M L, et al. Ghost imaging of a moving target with an unknown constant speed[J]. Applied Physics Letters, 2014, 104(25): 251120.

    [45] Li X H, Deng C J, Chen M L, et al. Ghost imaging for an axially moving target with an unknown constant speed[J]. Photonics Research, 2015, 3(4): 153-157.

    [46] Sun S, Gu J H, Lin H Z, et al. Gradual ghost imaging of moving objects by tracking based on cross correlation[J]. Optics Letters, 2019, 44(22): 5594-5597.

    [47] Jiao S M, Sun M J, Gao Y, et al. Motion estimation and quality enhancement for a single image in dynamic single-pixel imaging[J]. Optics Express, 2019, 27(9): 12841-12854.

    [48] Pan L, Wang Y Q, Deng C J, et al. Micro-Doppler effect based vibrating object imaging of coherent detection GISC lidar[J]. Optics Express, 2021, 29(26): 43022-43031.

    GONG Wenlin, CHEN Mingliang, HAN Shensheng. Research progress and prospect on ghost imaging lidar[J]. Chinese Journal of Quantum Electronics, 2022, 39(6): 835
    Download Citation