• Journal of Innovative Optical Health Sciences
  • Vol. 14, Issue 3, 2150014 (2021)
Yaqin Wan1, Meiqun Wang2、3, Shaorong Zhang2、3, and Bingbin Xie2、3、*
Author Affiliations
  • 1Out-Patient Department of the Second Affiliated Hospital of Nanchang University 1 Minde Road, Nanchang 330006, P. R. China
  • 2Department of Otolaryngology Head and Neck Surgery The Second Affiliated Hospital of Nanchang University 1 Minde Road, Nanchang 330006, P. R. China
  • 3Jiangxi Biomedical Engineering Research Center for Auditory Research 1 Minde Road, Nanchang 330006, P. R. China
  • show less
    DOI: 10.1142/s1793545821500140 Cite this Article
    Yaqin Wan, Meiqun Wang, Shaorong Zhang, Bingbin Xie. Availability and safety assessment of infrared neural stimulation at high repetition rate through an implantable optrode[J]. Journal of Innovative Optical Health Sciences, 2021, 14(3): 2150014 Copy Citation Text show less
    References

    [1] G. S. G. Geleoc, J. R. Holt, "Sound strategies for hearing restoration," Science 344(6184), 1241062 (2014).

    [2] U. Müller, P. G. Barr-Gillespie, "New treatment options for hearing loss," Nat. Rev. Drug Discov. 14(5), 346–365 (2015).

    [3] A. Dieter, C. J. Duque-Afonso, V. Rankovic, M. Jeschke, T. Moser, "Near physiological spectral selectivity of cochlear optogenetics," Nat. Commun. 10(1), 1910–1962 (2019).

    [4] L. M. Friesen, R. V. Shannon, D. Baskent, X. Wang, "Speech recognition in noise as a function of the number of spectral channels: Comparison of acoustic hearing and cochlear implants," J. Acoust. Soc. Am. 110(2), 1150–1163 (2001).

    [5] T. Dombrowski, V. Rankovic, T. Moser, "Toward the optical cochlear implant," Cold Spring Harb. Perspect. Med. 9(8), a33225 (2018).

    [6] C. P. Richter, A. I. Matic, J. D. Wells, E. D. Jansen, J. T. Walsh, "Neural stimulation with optical radiation," Laser Photonics Rev. 5(1), 68–80 (2011).

    [7] A. C. Thompson, P. R. Stoddart, E. D. Jansen, "Optical stimulation of neurons," Curr. Mol. Imaging 3(2), 162–177 (2014).

    [8] B. Xie, C. Dai, H. Li, "Attenuated infrared neuron stimulation response in cochlea of deaf animals may associate with the degeneration of spiral ganglion neurons," Biomed. Opt. Express 6(6), 1990–2005 (2015).

    [9] X. Tan, I. Jahan, Y. Xu, S. Stock, C. C. Kwan, C. Soriano, X. Xiao, J. García-A?overos, B. Fritzsch, C.-P. Richter, "Auditory neural activity in congenitally deaf mice induced by infrared neural stimulation," Sci. Rep. 8(1), 388 (2018).

    [10] L. Paris, I. Marc, B. Charlot, M. Dumas, J. Valmier, F. Bardin, "Millisecond infrared laser pulses depolarize and elicit action potentials on in-vitro dorsal root ganglion neurons," Biomed. Opt. Express 8 (10), 4568 (2017).

    [11] C.-P. Richter, X. Tan, "Photons and neurons," Hear. Res. 311, 72–88 (2014).

    [12] H. Zhao, "Recent progress of development of optogenetic implantable neural probes," Int. J. Mol. Sci. 18(8), 1751 (2017).

    [13] J. G. Bernstein, P. A. Garrity, E. S. Boyden, "Optogenetics and thermogenetics: Technologies for controlling the activity of targeted cells within intact neural circuits," Curr. Opin. Neurobiol. 22(1), 61–71 (2012).

    [14] D. Nelidova, R. K. Morikawa, C. S. Cowan, Z. Raics, D. Goldblum, H. P. N. Scholl, T. Szikra, A. Szabo, D. Hillier, B. Roska, "Restoring light sensitivity using tunable near-infrared sensors," Science 368(6495), 1108–1113 (2020).

    [15] W. L. Hart, T. Kameneva, A. K. Wise, P. R. Stoddart, "Biological considerations of optical interfaces for neuromodulation," Adv. Opt. Mater. 7(19), 1900385 (2019).

    [16] V. Lumbreras, E. Bas, C. Gupta, S. M. Rajguru, "Pulsed infrared radiation excites cultured neonatal spiral and vestibular ganglion neurons by modulating mitochondrial calcium cycling," J. Neurophysiol. 112(6), 1246–1255 (2014).

    [17] V. H. Hernandez, A. Gehrt, K. Reuter, Z. Jing, M. Jeschke, A. M. Schulz, G. Hoch, M. Bartels, G. Vogt, C. W. Garnham, H. Yawo, Y. Fukazawa, G. J. Augustine, E. Bamberg, S. Kügler, T. Salditt, L. de Hoz, N. Strenzke, T. Moser, "Optogenetic stimulation of the auditory pathway," J. Clin. Invest. 124(3), 1114–1129 (2014).

    [18] C. Wrobel, A. Dieter, A. Huet, D. Keppeler, C. J. Duque-Afonso, C. Vogl, G. Hoch, M. Jeschke, T. Moser, "Optogenetic stimulation of cochlear neurons activates the auditory pathway and restores auditory-driven behavior in deaf adult gerbils," Sci. Transl. Med. 10(449), eaao0540 (2018).

    [19] A. C. Horvath, S. Borbely, ?. C. Boros, L. Komaromi, P. Koppa, P. Barthó, Z. Fekete, "Infrared neural stimulation and inhibition using an implantable silicon photonic microdevice," Microsyst. Nanoeng. 6(1), 44 (2020).

    [20] C. P. Richter, S. M. Rajguru, A. I. Matic, E. L. Moreno, A. J. Fishman, A. M. Robinson, E. Suh, J. T. Walsh, "Spread of cochlear excitation during stimulation with pulsed infrared radiation: Inferior colliculus measurements," J. Neural Eng. 8(5), 56006 (2011).

    [21] A. D. Izzo, J. T. Walsh, E. D. Jansen, M. Bendett, J. Webb, H. Ralph, C.-P. Richter, "Optical parameter variability in laser nerve stimulation: A study of pulse duration, repetition rate, and wavelength," IEEE Trans. Biomed. Eng. 54(6), 1108–1114 (2007).

    [22] A. I. Matic, A. M. Robinson, H. K. Young, B. Badofsky, S. M. Rajguru, S. Stock, C. P. Richter, "Behaviored and electrophysiological responses evoked by chronic infrared neural stimulation of the cochlea," PLOS One 8(3), e58189 (2013).

    [23] M. A. Rutherford, N. M. Chapochnikov, T. Moser, "Spike encoding of neurotransmitter release timing by spiral ganglion neurons of the cochlea," J. Neurosci. 32(14), 4773–4789 (2012).

    [24] W. G. A. Brown, K. Needham, J. M. Begeng, A. C. Thompson, B. A. Nayagam, T. Kameneva, P. R. Stoddart, "Thermal damage threshold of neurons during infrared stimulation," Biomed. Opt. Express 11(4), 2224 (2020).

    [25] M. Schultz, P. Baumho?, H. Maier, I. U. Teudt, A. Kruger, T. Lenarz, A. Kral, "Nanosecond laser pulse stimulation of the inner ear — A wavelength study," Biomed. Opt. Express 3(12), 3332–3345 (2012).

    [26] J. Wang, J. Lu, C. Li, L. Xu, X. Li, L. Tian, "Pulsed 980 nm short wavelength infrared neural stimulation in cochlea and laser parameter effects on auditory response characteristics," Biomed. Eng. Online 14(1), 89 (2015).

    [27] P. Baumho?, N. Kallweit, A. Kral, "Intracochlear near infrared stimulation: Feasibility of optoacoustic stimulation in vivo," Hear. Res. 371, 40–52 (2019).

    [28] R. T. Richardson, A. C. Thompson, A. K. Wise, K. Needham, "Challenges for the application of optical stimulation in the cochlea for the study and treatment of hearing loss," Expert Opin. Biol. Ther. 17(2), 213–223 (2017).

    [29] V. Goyal, S. Rajguru, A. I. Matic, S. R. Stock, C.-P. Richter, "Acute damage threshold for infrared neural stimulation of the cochlea: Functional and histological evaluation," Anat. Rec. 295(11), 1987– 1999 (2012).

    [30] A. D. Izzo, J. T. Walsh, Jr., H. Ralph, J. Webb, M. Bendett, J. Wells, C. P. Richter, "Laser stimulation of auditory neurons: Effect of shorter pulse duration and penetration depth," Biophys. J. 94(8), 3159–3166 (2008).

    [31] R. M. Banakis, A. I. Matic, S. M. Rajguru, C.-P. Richter, "Optical stimulation of the auditory nerve: Effects of pulse shape," Proc. SPIE 7883(1), 788358 (2011).

    [32] B. J. Norton, M. A. Bowler, J. D. Wells, M. D. Keller, "Analytical approaches for determining heat distributions and thermal criteria for infrared neural stimulation," J. Biomed. Opt. 18(9), 98001 (2013).

    [33] X. Tan, S. Rajguru, H. Young, N. Xia, S. R. Stock, X. Xiao, C. P. Richter, "Radiant energy required for infrared neural stimulation," Sci. Rep. 5, 13273 (2015).

    [34] A. C. Thompson, J. B. Fallon, A. K. Wise, S. A. Wade, R. K. Shepherd, P. R. Stoddart, "Infrared neural stimulation fails to evoke neural activity in the deaf guinea pig cochlea," Hear. Res. 324, 46–53 (2015).

    [35] J. C. Middlebrooks, R. L. Snyder, "Selective electrical stimulation of the auditory nerve activates a pathway specialized for high temporal acuity," J. Neurosci. 30(5), 1937–1946 (2010).

    [36] A. R. Duke, H. Lu, M. W. Jenkins, H. J. Chiel, E. D. Jansen, "Spatial and temporal variability in response to hybrid electro-optical stimulation," J. Neural Eng. 9(3), 36003 (2012).

    [37] J. C. Middlebrooks, "Cochlear-implant high pulse rate and narrow electrode configuration impair transmission of temporal information to the auditory cortex," J. Neurophysiol. 100(1), 92–107 (2008).

    [38] C.-P. Richter, R. Bayon, A. D. Izzo, M. Otting, E. Suh, S. Goyal, J. Hotaling, J. T. Walsh, "Optical stimulation of auditory neurons: Effects of acute and chronic deafening," Hear. Res. 242(1–2), 42–51 (2008).

    [39] J. Wells, C. Kao, P. Konrad, T. Milner, J. Kim, A. Mahadevan-Jansen, E. D. Jansen, "Biophysical mechanisms of transient optical stimulation of peripheral nerve," Biophys. J. 93(7), 2567–2580 (2007).

    [40] S. M. Rajguru, C. P. Richter, A. I. Matic, G. R. Holstein, S. M. Highstein, G. M. Dittami, R. D. Rabbitt, "Infrared photostimulation of the crista ampullaris," J. Physiol. 589(Pt 6), 1283–1294 (2011).

    [41] S. M. Rajguru, A. I. Matic, A. M. Robinson, A. J. Fishman, L. E. Moreno, A. Bradley, I. Vujanovic, J. Breen, J. D. Wells, M. Bendett, C.-P. Richter, "Optical cochlear implants: Evaluation of surgical approach and laser parameters in cats," Hear. Res. 269(1–2), 102–111 (2010).

    [42] M. J. Alemzadeh-Ansari, M. A. Ansari, M. Zakeri, M. Haghjoo, "Influence of radiant exposure and repetition rate in infrared neural stimulation with near-infrared lasers," Lasers Med. Sci. 34(8), 1555– 1566 (2019).

    [43] S.-R. Tsai, M. R. Hamblin, "Biological effects and medical applications of infrared radiation," J. Photochem. Photobiol. B, Biol. 170, 197–207 (2017).

    [44] A. R. Duke, M. W. Jenkins, H. Lu, J. M. McManus, H. J. Chiel, E. D. Jansen, "Transient and selective suppression of neural activity with infrared light," Sci. Rep. 3, 2600 (2013).

    Yaqin Wan, Meiqun Wang, Shaorong Zhang, Bingbin Xie. Availability and safety assessment of infrared neural stimulation at high repetition rate through an implantable optrode[J]. Journal of Innovative Optical Health Sciences, 2021, 14(3): 2150014
    Download Citation