• Journal of Inorganic Materials
  • Vol. 36, Issue 8, 807 (2021)
Xinglin PENG1、2, Shuxing LI3、*, Zehua LIU4, Xiumin YAO1、2, Rongjun XIE3, Zhengren HUANG1、2、4, and Xuejian LIU1、2、*
Author Affiliations
  • 11. Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
  • 22. College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
  • 33. College of Materials, Xiamen University, Xiamen 361005, China
  • 44. Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
  • show less
    DOI: 10.15541/jim20200652 Cite this Article
    Xinglin PENG, Shuxing LI, Zehua LIU, Xiumin YAO, Rongjun XIE, Zhengren HUANG, Xuejian LIU. Phosphor Ceramics for High-power Solid-state Lighting[J]. Journal of Inorganic Materials, 2021, 36(8): 807 Copy Citation Text show less
    Schematic of light conversion and propagation in monolithic (a) and composite (b) ceramics[18]
    1. Schematic of light conversion and propagation in monolithic (a) and composite (b) ceramics[18]
    Al2O3-YAG:Ce composite phosphor ceramics[11]
    2. Al2O3-YAG:Ce composite phosphor ceramics[11]
    YMASG:Ce phosphor ceramics[44]
    3. YMASG:Ce phosphor ceramics[44]
    PL and PLE spectra of YAG:Ce3+/Pr3+/Cr3+phosphor ceramics[29]
    4. PL and PLE spectra of YAG:Ce3+/Pr3+/Cr3+phosphor ceramics[29]
    CaAlSiN3:Eu2+ phosphor ceramics[6, 58]
    5. CaAlSiN3:Eu2+ phosphor ceramics[6, 58]
    Light-transmitting area and refractive index of common transparent ceramics[17]
    6. Light-transmitting area and refractive index of common transparent ceramics[17]
    Doped ionsIon radius/nmOccupied latticeRef.
    Y3+0.1019A[38]
    Gd3+0.1053A[26]
    Tb3+0.104A[45]
    Lu3+0.0977A[46]
    Mg2+0.089A[27]
    Sc3+0.087A[43]
    Al3+0.0535B[38]
    Sc3+0.0745B[43]
    Mg2+0.072B[44]
    Ga3+0.062B[26]
    Al3+0.039C[38]
    Si4+0.026C[44]
    Table 1. Doping ions and ionic radii of garnet phosphor ceramics at different lattice positions
    MethodsCompositionEmission peak position/nmCCT/KCRIRef.
    Adjust matrix chemical composition GdYAG:Ce525-5542968-429964.8[40]
    GdYAG:Ce528-5503688-478267.1[51]
    Al2O3-GdYAG:Ce 550*501071.4[52]
    MgAl2O4-GdYAG:Ce 550*454370[18]
    TbAG:Ce556-5644000-4900-[45]
    Al2O3-TbAG:Ce 555358063[53]
    TGAG:Ce550-570368174.7[25]
    GAGG:Ce568-574300078.9[26]
    GAGG:Ce570280058.7[47]
    YMASG:Ce537-577438481[27]
    YMASG:Ce533-5982018-4516-[44]
    Al2O3-YMASG:Ce 552-610486082.5[54]
    Adjust the luminescencecenter YAG:Ce3+/Pr3+535, 564, 609, 637-66.9[30]
    YAG:Ce3+/Cr3+534, 677, 688, etc.-72[31]
    YAG:Ce3+/Cr3+530, 690, 7054329-[50]
    YAG:Ce3+/Pr3+/Cr3+530, 609, 689, etc.-78[29]
    YAG:Ce3+/Mn2+520-5903870-519682.5[28]
    YAG:Ce3+/Dy3+496, 582, etc.5609-[55]
    LuAG:Dy3+482, 583, 675,etc.3485-3619-[56]
    Composite red fluorescent material LuAG:Ce/(Sr,Ca)AlSiN3:Eu 515, 640445094[33]
    LuAG:Ce/Eu-doped nitride565-587580089.4[48]
    YAG:Ce/Sr2Si5N8:Eu 610*395282[35]
    Al2O3-YAG:Ce/Red QD 552, 6343161-603580[49]
    Table 2. Summary of three methods for improving CRI and reducing CCT of garnet type phosphor ceramics
    Xinglin PENG, Shuxing LI, Zehua LIU, Xiumin YAO, Rongjun XIE, Zhengren HUANG, Xuejian LIU. Phosphor Ceramics for High-power Solid-state Lighting[J]. Journal of Inorganic Materials, 2021, 36(8): 807
    Download Citation