• Photonics Research
  • Vol. 12, Issue 2, 235 (2024)
Jingxuan Zhang1, Chenni Xu1、2, Patrick Sebbah2, and Li-Gang Wang1、*
Author Affiliations
  • 1School of Physics, Zhejiang University, Hangzhou 310058, China
  • 2Department of Physics, The Jack and Pearl Resnick Institute for Advanced Technology, Bar-Ilan University, Ramat-Gan 5290002, Israel
  • show less
    DOI: 10.1364/PRJ.503223 Cite this Article Set citation alerts
    Jingxuan Zhang, Chenni Xu, Patrick Sebbah, Li-Gang Wang. Diffraction limit of light in curved space[J]. Photonics Research, 2024, 12(2): 235 Copy Citation Text show less
    References

    [1] N. I. Zheludev. What diffraction limit?. Nat. Mater., 7, 420-422(2008).

    [2] J. B. Pendry. Negative refraction makes a perfect lens. Phys. Rev. Lett., 85, 3966-3969(2000).

    [3] A. Grbic, G. V. Eleftheriades. Overcoming the diffraction limit with a planar left-handed transmission-line lens. Phys. Rev. Lett., 92, 117403(2004).

    [4] N. Fang, H. Lee, C. Sun. Sub-diffraction-limited optical imaging with a silver superlens. Science, 308, 534-537(2005).

    [5] Z. Jacob, L. V. Alexeyev, E. Narimanov. Optical hyperlens: far-field imaging beyond the diffraction limit. Opt. Express, 14, 8247-8256(2006).

    [6] Z. Liu, H. Lee, Y. Xiong. Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science, 315, 1686(2007).

    [7] I. I. Smolyaninov, Y. J. Hung, C. C. Davis. Magnifying superlens in the visible frequency range. Science, 315, 1699-1701(2007).

    [8] S. Gazit, A. Szameit, Y. C. Eldar. Super-resolution and reconstruction of sparse sub-wavelength images. Opt. Express, 17, 23920-23946(2009).

    [9] S. W. Hell, J. Wichmann. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett., 19, 780-782(1994).

    [10] T. A. Klar, S. W. Hell. Subdiffraction resolution in far-field fluorescence microscopy. Opt. Lett., 24, 954-956(1999).

    [11] M. Hofmann, C. Eggeling, S. Jakobs. Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins. Proc. Natl. Acad. Sci. USA, 102, 17565-17569(2005).

    [12] M. J. Rust, M. Bates, X. Zhuang. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods, 3, 793-796(2006).

    [13] E. Betzig, G. H. Patterson, R. Sougrat. Imaging intracellular fluorescent proteins at nanometer resolution. Science, 313, 1642-1645(2006).

    [14] B. Huang, H. Babcock, X. Zhuang. Breaking the diffraction barrier: super-resolution imaging of cells. Cell, 143, 1047-1058(2010).

    [15] Y. M. Sigal, R. Zhou, X. Zhuang. Visualizing and discovering cellular structures with super-resolution microscopy. Science, 361, 880-887(2018).

    [16] L. J. Garay, J. R. Anglin, J. I. Cirac. Sonic analog of gravitational black holes in Bose-Einstein condensates. Phys. Rev. Lett., 85, 4643-4647(2000).

    [17] P. O. Fedichev, U. R. Fischer. Gibbons-Hawking effect in the sonic de Sitter space-time of an expanding Bose-Einstein-condensed gas. Phys. Rev. Lett., 91, 240407(2003).

    [18] O. Lahav, A. Itah, A. Blumkin. Realization of a sonic black hole analog in a Bose-Einstein condensate. Phys. Rev. Lett., 105, 240401(2010).

    [19] U. Leonhardt, P. Piwnicki. Relativistic effects of light in moving media with extremely low group velocity. Phys. Rev. Lett., 84, 822-825(2000).

    [20] D. A. Genov, S. Zhang, X. Zhang. Mimicking celestial mechanics in metamaterials. Nat. Phys., 5, 687-692(2009).

    [21] C. Sheng, H. Liu, Y. Wang. Trapping light by mimicking gravitational lensing. Nat. Photonics, 7, 902-906(2013).

    [22] Q. Ba, Y. Zhou, J. Li. Conformal optical black hole for cavity. eLight, 2, 19(2022).

    [23] T. G. Philbin, C. Kuklewicz, S. Robertson. Fiber-optical analog of the event horizon. Science, 319, 1367-1370(2008).

    [24] R. Bekenstein, R. Schley, M. Mutzafi. Optical simulations of gravitational effects in the Newton-Schrödinger system. Nat. Phys., 11, 872-878(2015).

    [25] T. Roger, C. Maitland, K. Wilson. Optical analogues of the Newton-Schrödinger equation and boson star evolution. Nat. Commun., 7, 13492(2016).

    [26] C. Sheng, R. Bekenstein, H. Liu. Wavefront shaping through emulated curved space in waveguide settings. Nat. Commun., 7, 10747(2016).

    [27] X. Wang, H. Chen, H. Liu. Self-focusing and the Talbot effect in conformal transformation optics. Phys. Rev. Lett., 119, 033902(2017).

    [28] S. Batz, U. Peschel. Linear and nonlinear optics in curved space. Phys. Rev. A, 78, 043821(2008).

    [29] R. C. T. da Costa. Quantum mechanics of a constrained particle. Phys. Rev. A, 23, 1982-1987(1981).

    [30] C. Xu, A. Abbas, L.-G. Wang. Wolf effect of partially coherent light fields in two-dimensional curved space. Phys. Rev. A, 97, 063827(2018).

    [31] C. Xu, A. Abbas, L.-G. Wang. Generalization of Wolf effect of light on arbitrary two-dimensional surface of revolution. Opt. Express, 26, 33263-33277(2018).

    [32] R. Bekenstein, J. Nemirovsky, I. Kaminer. Shape-preserving accelerating electromagnetic wave packets in curved space. Phys. Rev. X, 4, 011038(2014).

    [33] C. Xu, L.-G. Wang. Gouy and spatial-curvature-induced phase shifts of light in two-dimensional curved space. New J. Phys., 21, 113013(2019).

    [34] E. Lustig, M.-I. Cohen, R. Bekenstein. Curved-space topological phases in photonic lattices. Phys. Rev. A, 96, 041804(2017).

    [35] S. Batz, U. Peschel. Solitons in curved space of constant curvature. Phys. Rev. A, 81, 053806(2010).

    [36] C. Xu, I. Dana, L.-G. Wang. Light chaotic dynamics in the transformation from curved to flat surfaces. Proc. Natl. Acad. Sci. USA, 119, e2112052119(2022).

    [37] C. Xu, L.-G. Wang, P. Sebbah. Ray engineering from chaos to order in 2D optical cavities. Laser Photon. Rev., 17, 2200724(2023).

    [38] C. Xu, L.-G. Wang. Theory of light propagation in arbitrary two-dimensional curved space. Photon. Res., 9, 2486-2493(2021).

    [39] V. H. Schultheiss, S. Batz, A. Szameit. Optics in curved space. Phys. Rev. Lett., 105, 143901(2010).

    [40] A. Patsyk, M. A. Bandres, R. Bekenstein. Observation of accelerating wave packets in curved space. Phys. Rev. X, 8, 011001(2018).

    [41] R. Bekenstein, Y. Kabessa, Y. Sharabi. Control of light by curved space in nanophotonic structures. Nat. Photonics, 11, 664-670(2017).

    [42] V. H. Schultheiss, S. Batz, U. Peschel. Hanbury Brown and Twiss measurements in curved space. Nat. Photonics, 10, 106-110(2016).

    [43] A. Libster-Hershko, R. Shiloh, A. Arie. Surface plasmon polaritons on curved surfaces. Optica, 6, 115-118(2019).

    [44] W. Rindler. Relativity: Special, General, and Cosmological(2006).

    [45] J. Onoe, T. Ito, H. Shima. Observation of Riemannian geometric effects on electric states. Europhys. Lett., 98, 27001(2012).

    [46] S. Kumar, Z. Tong, X. Jiang. Advances in the design and manufacturing of novel freeform optics. Int. J. Extrem. Manuf., 4, 032004(2022).

    [47] J. P. Rolland, M. A. Davies, T. J. Suleski. Freeform optics for imaging. Optica, 8, 161-176(2021).

    [48] A. Bauer, E. M. Schiesser, J. P. Rolland. Starting geometry creation and design method for freeform optics. Nat. Commun., 9, 1756(2018).

    [49] Z. Li, X. Liu, F. Fang. Integrated manufacture of a freeform off-axis multi-reflective imaging system without optical alignment. Opt. Express, 26, 7625-7637(2018).

    [50] V. V. Cheianov, V. Fal’ko, B. L. Altshuler. The focusing of electron flow and a Veselago lens in graphene p-n junctions. Science, 315, 1252-1255(2007).

    [51] S. Chen, Z. Han, M. M. Elahi. Electron optics with p-n junctions in ballistic graphene. Science, 353, 1522-1525(2016).

    [52] C. Lv, R. Zhang, Z. Zhai. Curving the space by non-Hermiticity. Nat. Commun., 13, 2184(2022).

    [53] S. Gupta, H. Yu, B. I. Yakobson. Designing 1D correlated-electron states by non-Euclidean topography of 2D monolayers. Nat. Commun., 13, 3103(2022).

    Jingxuan Zhang, Chenni Xu, Patrick Sebbah, Li-Gang Wang. Diffraction limit of light in curved space[J]. Photonics Research, 2024, 12(2): 235
    Download Citation