• Photonics Research
  • Vol. 12, Issue 9, 1858 (2024)
Yuanyuan Yue1, Yang Chen2,4,*, Jianhua Jiang1, Lin Yao1..., Haiyu Wang3, Shanli Zhang2, Yuping Jia2, Ke Jiang2, Xiaojuan Sun2,5,* and Dabing Li2,6,*|Show fewer author(s)
Author Affiliations
  • 1School of Management Science and Information Engineering, Jilin University of Finance and Economics, Changchun 130117, China
  • 2Key Laboratory of Luminescence Science and Technology, Chinese Academy of Sciences & State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
  • 3State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
  • 4e-mail: cheny@ciomp.ac.cn
  • 5e-mail: sunxj@ciomp.ac.cn
  • 6e-mail: lidb@ciomp.ac.cn
  • show less
    DOI: 10.1364/PRJ.524978 Cite this Article Set citation alerts
    Yuanyuan Yue, Yang Chen, Jianhua Jiang, Lin Yao, Haiyu Wang, Shanli Zhang, Yuping Jia, Ke Jiang, Xiaojuan Sun, Dabing Li, "Configuration design of a 2D graphene/3D AlGaN van der Waals junction for high-sensitivity and self-powered ultraviolet detection and imaging," Photonics Res. 12, 1858 (2024) Copy Citation Text show less
    References

    [1] D. Li, K. Jiang, X. Sun. AlGaN photonics: recent advances in materials and ultraviolet devices. Adv. Opt. Photon., 10, 43-110(2018).

    [2] R. Yu, G. Liu, G. Wang. Ultrawide-bandgap semiconductor AlN crystals: growth and applications. J. Mater. Chem. C, 9, 1852-1873(2021).

    [3] S. Kargarrazi, A. S. Yalamarthy, P. F. Satterthwaite. Stable operation of AlGaN/GaN HEMTs for 25 h at 400°C in air. J. Electron Dev. Soc., 7, 931-935(2019).

    [4] S. Jha, E. V. Jelenković, M. M. Pejović. Stability of submicron AlGaN/GaN HEMT devices irradiated by gamma rays. Microelectron. Eng., 86, 37-40(2009).

    [5] H. H. Nersisyan, J. H. Lee, H. Y. Kim. Morphological diversity of AlN nano- and microstructures: synthesis, growth orientations and theoretical modelling. Int. Mater. Rev., 65, 323-355(2020).

    [6] Y. Chen, X. Zhou, Z. Zhang. Dual-band solar-blind UV photodetectors based on AlGaN/AlN superlattices. Mater. Lett., 291, 129583(2021).

    [7] Y. Gu, J. Guo, B. Ye. Self-powered AlGaN-based MSM solar-blind ultraviolet photodetectors with high Al-content AlxGa1−xN/AlyGa1−yN asymmetrical heterostructure. Appl. Phys. Lett., 123, 232103(2023).

    [8] H. Wang, M. Feng, Y. Zhong. Ultrahigh-responsivity ultraviolet photodetectors based on AlGaN/GaN double-channel high-electron-mobility transistors. ACS Photon., 11, 180-186(2024).

    [9] Q. Lyu, H. Jiang, K. M. Laua. High gain and high ultraviolet/visible rejection ratio photodetectors using p-GaN/AlGaN/GaN heterostructures grown on Si. Appl. Phys. Lett., 117, 071101(2020).

    [10] W. Wu, C. Liu, L. Han. Wafer-scale high sensitive UV photodetectors based on novel AlGaN/n-GaN/p-GaN heterostructure HEMT. Appl. Surf. Sci., 618, 156618(2023).

    [11] Y. Zhong, E. Berikaa, J. Lu. Molecular beam epitaxial growth and optical characterization of AlGaN nanowires with reduced substrate temperature. AIP Adv., 10, 025022(2020).

    [12] C. Wang, H. Zhu, S. Wang. Effect of uniaxial tensile strains at different orientations on the characteristics of AlGaN/GaN high-electron-mobility transistors. IEEE Trans. Electron. Dev., 67, 449-454(2020).

    [13] Y. Xie, P. Wan, M. Jiang. Performance enhancement of a self-biased n-ZnO microwire/p-GaN heterojunction ultraviolet photodetector incorporating Ag nanowires. CrystEngComm, 24, 7727-7738(2022).

    [14] J. Li, X. Xi, X. Li. Ultra-high and fast ultraviolet response photodetectors based on lateral porous GaN/Ag nanowires composite nanostructure. Adv. Opt. Mater., 8, 1902162(2020).

    [15] C. H. Chen, S. J. Chang, Y. K. Su. GaN metal-semiconductor-metal ultraviolet photodetectors with transparent indium-tin-oxide Schottky contacts. IEEE Photon. Technol. Lett., 13, 848-850(2001).

    [16] Y.-Z. Chiou, J.-J. Tang. GaN photodetectors with transparent indium tin oxide electrodes. Jpn. J. Appl. Phys., 43, 4146-4149(2004).

    [17] T. K. Ko, S. J. Chang, J. K. Sheu. AlGaN/GaN Schottky-barrier UV-B bandpass photodetectors with ITO contacts and LT-GaN cap layers. Semicond. Sci. Technol., 21, 1064-1068(2006).

    [18] Y. Chen, Y. Wu, J. Ben. A high-response ultraviolet photodetector by integrating GaN nanoparticles with graphene. J. Alloys Compd., 868, 159281(2021).

    [19] H. Parimoo, Q. Zhang, M. Vafadar. AlGaN nanowire deep ultraviolet light emitting diodes with graphene electrode. Appl. Phys. Lett., 120, 171108(2022).

    [20] S. Zhang, A. Hu, Q. Liu. Bipolar photoresponse in graphene/GaN heterostructure and its secure function in free-space optical communication. Adv. Electron. Mater., 9, 2300243(2023).

    [21] C. Mayousse, C. Celle, A. Fraczkiewicz. Stability of silver nanowire based electrodes under environmental and electrical stresses. Nanoscale, 7, 2107-2115(2015).

    [22] L. Xu, Y. Yang, Z.-W. Hu. Comparison study on the stability of copper nanowires and their oxidation kinetics in gas and liquid. ACS Nano, 10, 3823-3834(2016).

    [23] N. Biyikli, I. Kimukin, B. Butun. ITO-Schottky photodiodes for high-performance detection in the UV-IR spectrum. IEEE J. Sel. Top. Quantum Electron., 10, 759-765(2004).

    [24] M. I. Fadlalla, P. S. Kumar, V. Selvam. Emerging energy and environmental application of graphene and their composites: a review. J. Mater. Sci., 55, 7156-7183(2020).

    [25] A.-Q. Hu, Q.-L. Liu, X. Guo. Carrier localization enhanced high responsivity in graphene/semiconductor photodetectors. Chip, 1, 100006(2022).

    [26] B. Pandit, E. F. Schubert, J. Cho. Dual-functional ultraviolet photodetector with graphene electrodes on AlGaN/GaN heterostructure. Sci. Rep., 10, 22059(2020).

    [27] Y. Chen, K. Jiang, H. Zang. Growth of high-quality wafer-scale graphene on dielectric substrate for high-response ultraviolet photodetector. Carbon, 175, 155-163(2021).

    [28] H. Tian, Q. Liu, A. Hu. Hybrid graphene/GaN ultraviolet phototransistors with high responsivity and speed. Opt. Express, 26, 5408-5415(2018).

    [29] S. Wang, R. Chen, Y. Ren. Highly-rectifying graphene/GaN Schottky contact for self-powered UV photodetector. IEEE Photon. Technol. Lett., 33, 213-216(2021).

    [30] B. Pandit, H.-S. Jang, Y. Jeong. Highly sensitive ultraviolet photodetector based on an AlGaN/GaN HEMT with graphene-on-p-GaN mesa structure. Adv. Mater. Interfaces, 10, 2202379(2023).

    [31] T. Hu, L. Zhao, Y. Wang. High-sensitivity and fast-speed UV photodetectors based on asymmetric nanoporous-GaN/graphene vertical junction. ACS Nano, 17, 8411-8419(2023).

    [32] M. Kumar, H. Jeong, K. Polat. Fabrication and characterization of graphene/AlGaN/GaN ultraviolet Schottky photodetector. J. Phys. D, 49, 275105(2016).

    [33] S.-C. Wu, M.-J. Wu, Y.-F. Chen. Nanolayered graphene/hexagonal boron nitride/n-AlGaN heterostructures as solar-blind deep-ultraviolet photodetectors. ACS Appl. Nano Mater., 3, 7595-7603(2020).

    [34] J. Li, X. Xi, S. Lin. Ultrahigh sensitivity graphene/nanoporous GaN ultraviolet photodetectors. ACS Appl. Mater. Interfaces, 12, 11965-11971(2020).

    [35] Y. Chen, N. Zhang, Y.-F. Li. Microscale-patterned graphene electrodes for organic light-emitting devices by a simple patterning strategy. Adv. Opt. Mater., 6, 1701348(2018).

    [36] S. F. Chichibu, A. Shikanai, T. Deguchi. Comparison of optical properties of GaN/AlGaN and InGaN/AlGaN single quantum wells. Jpn. J. Appl. Phys., 39, 2417-2424(2000).

    [37] R. Chierchia, T. Böttcher, H. Heinke. Microstructure of heteroepitaxial GaN revealed by X-ray diffraction. J. Appl. Phys., 93, 8918-8925(2023).

    [38] C. Fan, X. Sun, Z. Shi. Wafer-scale fabrication of graphene-based plasmonic photodetector with polarization-sensitive, broadband, and enhanced response. Adv. Opt. Mater., 11, 2202860(2023).

    [39] C. Biswas, F. Güuneş, D. D. Loc. Negative and positive persistent photoconductance in graphene. Nano Lett., 11, 4682-4687(2011).

    [40] A. Hu, H. Tian, Q. Liu. Graphene on self-assembled InGaN quantum dots enabling ultrahighly sensitive photodetectors. Adv. Opt. Mater., 7, 1801792(2019).

    [41] J. Guo, X. Yuan, H. Ruan. A flexible PI/graphene heterojunction optoelectronic device modulated by TENG and UV light for neuromorphic vision system. Nano Energy, 117, 108928(2023).

    [42] J. Zhang, P. Guo, Z. Guo. Retina-inspired artificial synapses with ultraviolet to near-infrared broadband responses for energy-efficient neuromorphic visual systems. Adv. Funct. Mater., 33, 2302885(2023).

    [43] Y. Chen, Z. Shi, B. Lv. In situ growth of wafer-scale patterned graphene and fabrication of optoelectronic artificial synaptic device array based on graphene/n-AlGaN heterojunction for visual learning. Small, 20, 2401150(2024).

    Yuanyuan Yue, Yang Chen, Jianhua Jiang, Lin Yao, Haiyu Wang, Shanli Zhang, Yuping Jia, Ke Jiang, Xiaojuan Sun, Dabing Li, "Configuration design of a 2D graphene/3D AlGaN van der Waals junction for high-sensitivity and self-powered ultraviolet detection and imaging," Photonics Res. 12, 1858 (2024)
    Download Citation