• Opto-Electronic Advances
  • Vol. 7, Issue 6, 240029 (2024)
Anir S. Sharbirin, Rebekah E. Kong, Wendy B. Mato, Trang Thu Tran..., Eunji Lee, Jolene W. P. Khor, Afrizal L. Fadli and Jeongyong Kim*|Show fewer author(s)
DOI: 10.29026/oea.2024.240029 Cite this Article
Anir S. Sharbirin, Rebekah E. Kong, Wendy B. Mato, Trang Thu Tran, Eunji Lee, Jolene W. P. Khor, Afrizal L. Fadli, Jeongyong Kim. Highly enhanced UV absorption and light emission of monolayer WS2 through hybridization with Ti2N MXene quantum dots and g-C3N4 quantum dots[J]. Opto-Electronic Advances, 2024, 7(6): 240029 Copy Citation Text show less
References

[1] KF Mak, C Lee, J Hone et al. Atomically thin MoS2: a new direct-gap semiconductor. Phys Rev Lett, 105, 136805(2010).

[2] Y Lee, JDS Forte, A Chaves et al. Boosting quantum yields in two-dimensional semiconductors via proximal metal plates. Nat Commun, 12, 7095(2021).

[3] HN Wang, CJ Zhang, F Rana. Ultrafast dynamics of defect-assisted electron–hole recombination in monolayer MoS2. Nano Lett, 15, 339-345(2015).

[4] JWP Khor, TT Tran, AS Sharbirin et al. Prediction of quantum yields of monolayer WS2 by machine learning. Adv Opt Mater, 12, 2302195(2024).

[5] E Lee, KP Dhakal, H Song et al. Anomalous temperature and polarization dependences of photoluminescence of metal-organic chemical vapor deposition-grown GeSe2. Adv Opt Mater, 12, 2301355(2024).

[6] TT Tran, Y Lee, S Roy et al. Synergetic enhancement of quantum yield and exciton lifetime of monolayer WS2 by proximal metal plate and negative electric bias. ACS Nano, 18, 220-228(2024).

[7] D Kozawa, R Kumar, A Carvalho et al. Photocarrier relaxation pathway in two-dimensional semiconducting transition metal dichalcogenides. Nat Commun, 5, 4543(2014).

[8] HM Hill, AF Rigosi, C Roquelet et al. Observation of excitonic rydberg states in monolayer MoS2 and WS2 by photoluminescence excitation spectroscopy. Nano Lett, 15, 2992-2997(2015).

[9] Y Lee, J Kim. Controlling lattice defects and inter-exciton interactions in monolayer transition metal dichalcogenides for efficient light emission. ACS Photonics, 5, 4187-4194(2018).

[10] XH Huang, ZD Li, X Liu et al. Neutralizing defect states in MoS2 monolayers. ACS Appl Mater Interfaces, 13, 44686-44692(2021).

[11] Z Wang, ZG Dong, YH Gu et al. Giant photoluminescence enhancement in tungsten-diselenide-gold plasmonic hybrid structures. Nat Commun, 7, 11283(2016).

[12] X Huang, XW Feng, L Chen et al. Fabry-Perot cavity enhanced light-matter interactions in two-dimensional van der Waals heterostructure. Nano Energy, 62, 667-673(2019).

[13] KJ Singh, T Ahmed, P Gautam et al. Recent advances in two‐dimensional quantum dots and their applications. Nanomaterials, 11, 1549(2021).

[14] YH Xu, XX Wang, WL Zhang et al. Recent progress in two-dimensional inorganic quantum dots. Chem Soc Rev, 47, 586-625(2018).

[15] F Zheng, Z Chen, JF Li et al. A highly sensitive CRISPR-empowered surface plasmon resonance sensor for diagnosis of inherited diseases with femtomolar-level real-time quantification. Adv Sci, 9, 2105231(2022).

[16] Z Chen, JF Li, TZ Li et al. A CRISPR/Cas12a-empowered surface plasmon resonance platform for rapid and specific diagnosis of the Omicron variant of SARS-CoV-2. Natl Sci Rev, 9, nwac104(2022).

[17] TY Xue, WY Liang, YW Li et al. Ultrasensitive detection of miRNA with an antimonene-based surface plasmon resonance sensor. Nat Commun, 10, 28(2019).

[18] BB Shao, ZF Liu, GM Zeng et al. Two-dimensional transition metal carbide and nitride (MXene) derived quantum dots (QDs): synthesis, properties, applications and prospects. J Mater Chem A, 8, 7508-7535(2020).

[19] XW Wang, GZ Sun, N Li et al. Quantum dots derived from two-dimensional materials and their applications for catalysis and energy. Chem Soc Rev, 45, 2239-2262(2016).

[20] Q Xue, HJ Zhang, MS Zhu et al. Photoluminescent Ti3C2 MXene quantum dots for multicolor cellular imaging. Adv Mater, 29, 1604847(2017).

[21] Y Zhan, ZM Liu, QQ Liu et al. A facile and one-pot synthesis of fluorescent graphitic carbon nitride quantum dots for bio-imaging applications. New J Chem, 41, 3930-3938(2017).

[22] Y Liu, H Li, X Zheng et al. Giant photoluminescence enhancement in monolayer WS2 by energy transfer from CsPbBr3 quantum dots. Opt Mater Express, 7, 1327-1334(2017).

[23] Y Luo, HY Shan, XQ Gao et al. Photoluminescence enhancement of MoS2/CdSe quantum rod heterostructures induced by energy transfer and exciton-exciton annihilation suppression. Nanoscale Horiz, 5, 971-977(2020).

[24] A Boulesbaa, K Wang, M Mahjouri-Samani et al. Ultrafast charge transfer and hybrid exciton formation in 2D/0D heterostructures. J Am Chem Soc, 138, 14713-14719(2016).

[25] WT Su, JK Li, F Chen et al. Enhancing nonradiative energy transfer between nitridized carbon quantum dots and monolayer WS2. J Phys Chem C, 123, 25456-25463(2019).

[26] WT Su, YC Wang, WW Wu et al. Towards full-colour tunable photoluminescence of monolayer MoS2/carbon quantum dot ultra-thin films. J Mater Chem C, 5, 6352-6358(2017).

[27] AS Sharbirin, S Akhtar, JY Kim. Light-emitting MXene quantum dots. Opto-Electron Adv, 4, 200077(2021).

[28] AF Rigosi, HM Hill, YL Li et al. Probing interlayer interactions in transition metal dichalcogenide heterostructures by optical spectroscopy: MoS2/WS2 and MoSe2/WSe2. Nano Lett, 15, 5033-5038(2015).

[29] A Castellanos-Gomez, M Buscema, R Molenaar et al. Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping. 2D Mater, 1, 011002(2014).

[30] AS Sharbirin, S Roy, TT Tran et al. Light-emitting Ti2N (MXene) quantum dots: synthesis, characterization and theoretical calculations. J Mater Chem C, 10, 6508-6514(2022).

[31] HL Zeng, GB Liu, JF Dai et al. Optical signature of symmetry variations and spin-valley coupling in atomically thin tungsten dichalcogenides. Sci Rep, 3, 1608(2013).

[32] KP Dhakal, DL Duong, J Lee et al. Confocal absorption spectral imaging of MoS2: optical transitions depending on the atomic thickness of intrinsic and chemically doped MoS2. Nanoscale, 6, 13028-13035(2014).

[33] SC Zhai, P Guo, JM Zheng et al. Density functional theory study on the stability, electronic structure and absorption spectrum of small size g-C3N4 quantum dots. Comput Mater Sci, 148, 149-156(2018).

[34] A Asaithambi, Tofighi N Kazemi, M Ghini et al. Energy transfer and charge transfer between semiconducting nanocrystals and transition metal dichalcogenide monolayers. Chem Commun, 59, 7717-7730(2023).

[35] DM Marin, S Payerpaj, GS Collier et al. Efficient intersystem crossing using singly halogenated carbomethoxyphenyl porphyrins measured using delayed fluorescence, chemical quenching, and singlet oxygen emission. Phys Chem Chem Phys, 17, 29090-29096(2015).

[36] C Seo, M Kim, J Lee et al. Spectroscopic evidence of energy transfer in bodipy-incorporated nano-porphyrinic metal-organic frameworks. Nanomaterials, 10, 1925(2020).

[37] J Park, MS Kim, E Cha et al. Synthesis of uniform single layer WS2 for tunable photoluminescence. Sci Rep, 7, 16121(2017).

[38] YD Ma, Y Dai, M Guo et al. Electronic and magnetic properties of perfect, vacancy-doped, and nonmetal adsorbed MoSe2, MoTe2 and WS2 monolayers. Phys Chem Chem Phys, 13, 15546-15553(2011).

[39] Q Peng, ZY Wang, B Sa et al. Electronic structures and enhanced optical properties of blue phosphorene/transition metal dichalcogenides van der Waals heterostructures. Sci Rep, 6, 31994(2016).

[40] LL Wu, YZ Chen, HZ Zhou et al. Ultrafast energy transfer of both bright and dark excitons in 2D van der Waals heterostructures beyond dipolar coupling. ACS Nano, 13, 2341-2348(2019).

[41] S Roy, GP Neupane, KP Dhakal et al. Observation of charge transfer in heterostructures composed of MoSe2 quantum dots and a monolayer of MoS2 or WSe2. J Phys Chem C, 121, 1997-2004(2017).

[42] GP Neupane, BW Wang, M Tebyetekerwa et al. Highly enhanced light–matter interaction in MXene quantum dots–monolayer WS2 heterostructure. Small, 17, 2006309(2021).

[43] LPL Mawlong, A Bora, PK Giri. Coupled charge transfer dynamics and photoluminescence quenching in monolayer MoS2 decorated with WS2 quantum dots. Sci Rep, 9, 19414(2019).

[44] JD Lin, C Han, F Wang et al. Electron-doping-enhanced trion formation in monolayer molybdenum disulfide functionalized with cesium carbonate. ACS Nano, 8, 5323-5329(2014).

[45] MS Kim, S Roy, J Lee et al. Enhanced light emission from monolayer semiconductors by forming heterostructures with ZnO thin films. ACS Appl Mater Interfaces, 8, 28809-28815(2016).

[46] YM Cao, S Wood, F Richheimer et al. Enhancing and quantifying spatial homogeneity in monolayer WS2. Sci Rep, 11, 14831(2021).

[47] MG Bianchi, F Risplendi, Fiorentin M Re et al. Engineering the electrical and optical properties of WS2 monolayers via defect control. Adv Sci, 11, 2305162(2024).

[48] S Mouri, Y Miyauchi, K Matsuda. Tunable photoluminescence of monolayer MoS2 via chemical doping. Nano Lett, 13, 5944-5948(2013).

[49] A Bora, S Paul, MT Hossain et al. Quantitative understanding of the photoluminescence modulation and doping of monolayer WS2 by heterostructuring with Non-van der Waals 2D Bi2O2Se quantum dots. J Phys Chem C, 126, 12623-12634(2022).

[50] MS Kim, C Seo, H Kim et al. Simultaneous hosting of positive and negative trions and the enhanced direct band emission in MoSe2/MoS2 heterostacked multilayers. ACS Nano, 10, 6211-6219(2016).

[51] WS Xu, D Kozawa, YQ Zhou et al. Controlling photoluminescence enhancement and energy transfer in WS2: hBN: WS2 vertical stacks by precise interlayer distances. Small, 16, 1905985(2020).

[52] MM Haidari, H Kim, JH Kim et al. Doping effect in graphene-graphene oxide interlayer. Sci Rep, 10, 8258(2020).

Anir S. Sharbirin, Rebekah E. Kong, Wendy B. Mato, Trang Thu Tran, Eunji Lee, Jolene W. P. Khor, Afrizal L. Fadli, Jeongyong Kim. Highly enhanced UV absorption and light emission of monolayer WS2 through hybridization with Ti2N MXene quantum dots and g-C3N4 quantum dots[J]. Opto-Electronic Advances, 2024, 7(6): 240029
Download Citation