• Laser & Optoelectronics Progress
  • Vol. 61, Issue 13, 1324001 (2024)
Sha Chen1, Qinke Liu1, Yan Li2, Yaojie Zhou1..., Zhendong Lu1, Xiaoqing Luo1,* and Xinlin Wang1,3,**|Show fewer author(s)
Author Affiliations
  • 1School of Electrical Engineering, University of South China, Hengyang 421001, Hunan , China
  • 2School of Nuclear Science and Technology, University of South China, Hengyang 421001, Hunan , China
  • 3Hunan Province Key Laboratory for Ultra-Fast Micro/Nano Technology and Advanced Laser Manufacture, School of Mechanical Engineering, University of South China, Hengyang 421001, Hunan , China
  • show less
    DOI: 10.3788/LOP232508 Cite this Article Set citation alerts
    Sha Chen, Qinke Liu, Yan Li, Yaojie Zhou, Zhendong Lu, Xiaoqing Luo, Xinlin Wang. Investigation of Sensing and Slow-Light Based on Dual Accidental Quasi-Bound States in the Continuum[J]. Laser & Optoelectronics Progress, 2024, 61(13): 1324001 Copy Citation Text show less
    References

    [1] Zhao X G, Chen C X, Kaj K et al. Terahertz investigation of bound states in the continuum of metallic metasurfaces[J]. Optica, 7, 1548-1554(2020).

    [2] Kupriianov A S, Xu Y, Sayanskiy A et al. Metasurface engineering through bound states in the continuum[J]. Physical Review Applied, 12, 014024(2019).

    [3] Liu Q K, Li Y, Lu Z D et al. Steerable chiral optical responses unraveled in planar metasurfaces via bound states in the continuum[J]. Physical Review B, 108, 155410(2023).

    [4] Kodigala A, Lepetit T, Gu Q et al. Lasing action from photonic bound states in continuum[J]. Nature, 541, 196-199(2017).

    [5] Yao J Q, Li J T, Zhang Y T et al. Bound states in continuum in periodic optical systems[J]. Chinese Optics, 16, 1-23(2023).

    [6] Bi Q H, Peng Y J, Chen R et al. Theory and application of bound states in the continuum in photonics[J]. Acta Optica Sinica, 43, 1623008(2023).

    [7] Hsu C W, Zhen B, Lee J et al. Observation of trapped light within the radiation continuum[J]. Nature, 499, 188-191(2013).

    [8] Hsu C W, Zhen B, Stone A D et al. Bound states in the continuum[J]. Nature Reviews Materials, 1, 16048(2016).

    [9] Azzam S I, Kildishev A V. Photonic bound states in the continuum: from basics to applications[J]. Advanced Optical Materials, 9, 2001469(2021).

    [10] Koshelev K, Lepeshov S, Liu M et al. Asymmetric metasurfaces with high-Q resonances governed by bound states in the continuum[J]. Physical Review Letters, 121, 193903(2018).

    [11] He Y, Guo G T, Feng T H et al. Toroidal dipole bound states in the continuum[J]. Physical Review B, 98, 161112(2018).

    [12] Li S Y, Zhou C B, Liu T T et al. Symmetry-protected bound states in the continuum supported by all-dielectric metasurfaces[J]. Physical Review A, 100, 063803(2019).

    [13] Fan K B, Shadrivov I V, Padilla W J. Dynamic bound states in the continuum[J]. Optica, 6, 169-173(2019).

    [14] Sadrieva Z F, Sinev I S, Koshelev K L et al. Transition from optical bound states in the continuum to leaky resonances: role of substrate and roughness[J]. ACS Photonics, 4, 723-727(2017).

    [15] Doeleman H M, Monticone F, den Hollander W et al. Experimental observation of a polarization vortex at an optical bound state in the continuum[J]. Nature Photonics, 12, 397-401(2018).

    [16] Plotnik Y, Peleg O, Dreisow F et al. Experimental observation of optical bound states in the continuum[J]. Physical Review Letters, 107, 183901(2011).

    [17] Yu Z J, Xi X, Ma J W et al. Photonic integrated circuits with bound states in the continuum[J]. Optica, 6, 1342-1348(2019).

    [18] Azzam S I, Shalaev V M, Boltasseva A et al. Formation of bound states in the continuum in hybrid plasmonic-photonic systems[J]. Physical Review Letters, 121, 253901(2018).

    [19] Marinica D C, Borisov A G, Shabanov S V. Bound states in the continuum in photonics[J]. Physical Review Letters, 100, 183902(2008).

    [20] Zhen B, Hsu C W, Lu L et al. Topological nature of optical bound states in the continuum[J]. Physical Review Letters, 113, 257401(2014).

    [21] Minkov M, Williamson I A D, Xiao M et al. Zero-index bound states in the continuum[J]. Physical Review Letters, 121, 263901(2018).

    [22] Cong L Q, Singh R. Symmetry-protected dual bound states in the continuum in metamaterials[J]. Advanced Optical Materials, 7, 1900383(2019).

    [23] Xiao S Y, Qin M B, Duan J Y et al. Polarization-controlled dynamically switchable high-harmonic generation from all-dielectric metasurfaces governed by dual bound states in the continuum[J]. Physical Review B, 105, 195440(2022).

    [24] Liu Q K, Luo X Q, Xu X F et al. Interplay of bound states in the continuum empowers spectral-lineshape manipulation in all-dielectric metasurfaces[J]. Physical Review B, 107, 205422(2023).

    [25] Palik E D[M]. Handbook of optical constants of solids, 547-569(1997).

    [26] Schinke C, Christian Peest P, Schmidt J et al. Uncertainty analysis for the coefficient of band-to-band absorption of crystalline silicon[J]. AIP Advances, 5, 067168(2015).

    [27] Wang L, Dong F L. High quality factor dual wavelength Fano resonance based on continuous bound states[J]. Chinese Optics, 16, 824-832(2023).

    [28] Basharin A A, Chuguevsky V, Volsky N et al. Extremely high Q-factor metamaterials due to anapole excitation[J]. Physical Review B, 95, 035104(2017).

    [29] Cong L Q, Xu G Z. Toroidal dipole in hybrid bound states in the continuum[J]. Laser & Optoelectronics Progress, 60, 1811021(2023).

    [30] Yong Z H, Lei D Y, Lam C H et al. Ultrahigh refractive index sensing performance of plasmonic quadrupole resonances in gold nanoparticles[J]. Nanoscale Research Letters, 9, 187(2014).

    [31] Zhao J, Wang J X, Gao L Z et al. Sensing characteristics based on all-dielectric nanocylindrical hole metasurface[J]. Laser & Optoelectronics Progress, 60, 1928001(2023).

    [32] Zhang X, Zhao B L, Wu B et al. All-dielectric metasurface sensor based on Fano resonance[J]. Laser & Optoelectronics Progress, 59, 1728001(2022).

    [33] Chen Y, Zhang M, Ding Z X et al. Microfluidic refractive index sensor based on all-dielectric metasurfaces[J]. Chinese Journal of Lasers, 49, 0613001(2022).

    [34] Zhang X, Zhu X S, Shi Y W. An optical fiber refractive index sensor based on the hybrid mode of tamm and surface plasmon polaritons[J]. Sensors, 18, 2129(2018).

    [35] Li X S, Feng N X, Xu Y M et al. Theoretical and simulation study of dynamically tunable sensor based on liquid crystal-modulated Fano resonator in terahertz band[J]. Optics & Laser Technology, 155, 108350(2022).

    [36] Xu X F, Luo X Q, Zhang J Z et al. Near-infrared plasmonic sensing and digital metasurface via double Fano resonances[J]. Optics Express, 30, 5879-5895(2022).

    [37] Jin J S, Ma C J, Li D M et al. Research progress of terahertz slow light effect based on EIT metamaterials[J]. Infrared, 44, 32-38(2023).

    [38] Luo X Q, Wang D L, Zhang Z Q et al. Nonlinear optical behavior of a four-level quantum well with coupled relaxation of optical and longitudinal phonons[J]. Physical Review A, 84, 033803(2011).

    [39] Wang D C, Tang R, Feng Z et al. Symmetry-assisted spectral line shapes manipulation in dielectric double-Fano metasurfaces[J]. Advanced Optical Materials, 9, 2001874(2021).

    [40] Ma Y, Guo J Y, Chen L. Tunable slow light performance based on graphene metasurface[J]. Acta Optica Sinica, 43, 1623025(2023).

    [41] Melik-Gaykazyan E, Koshelev K, Choi J H et al. From Fano to quasi-BIC resonances in individual dielectric nanoantennas[J]. Nano Letters, 21, 1765-1771(2021).

    [42] Liu K, Lian M, Qin K R et al. Active tuning of electromagnetically induced transparency from chalcogenide-only metasurface[J]. Light: Advanced Manufacturing, 2, 251-261(2021).

    [43] Daghooghi T, Soroosh M, Ansari-Asl K. Low-power all-optical switch based on slow light photonic crystal[J]. Photonic Network Communications, 43, 177-184(2022).

    Sha Chen, Qinke Liu, Yan Li, Yaojie Zhou, Zhendong Lu, Xiaoqing Luo, Xinlin Wang. Investigation of Sensing and Slow-Light Based on Dual Accidental Quasi-Bound States in the Continuum[J]. Laser & Optoelectronics Progress, 2024, 61(13): 1324001
    Download Citation