• Photonics Research
  • Vol. 8, Issue 7, 1100 (2020)
Chang Kyun Ha1, Ki Sang Lee1, Dohyeon Kwon2, and Myeong Soo Kang1,*
Author Affiliations
  • 1Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
  • 2School of Mechanical and Aerospace Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
  • show less
    DOI: 10.1364/PRJ.389080 Cite this Article Set citation alerts
    Chang Kyun Ha, Ki Sang Lee, Dohyeon Kwon, Myeong Soo Kang, "Widely tunable ultra-narrow-linewidth dissipative soliton generation at the telecom band," Photonics Res. 8, 1100 (2020) Copy Citation Text show less
    References

    [1] W. Fu, L. G. Wright, P. Sidorenko, S. Backus, F. W. Wise. Several new directions for ultrafast fiber lasers. Opt. Express, 26, 9432-9463(2018).

    [2] S. T. Le, V. Aref, H. Buelow. Nonlinear signal multiplexing for communication beyond the Kerr nonlinearity limit. Nat. Photonics, 11, 570-576(2017).

    [3] J. M. Lukens, P. Lougovski. Frequency-encoded photonic qubits for scalable quantum information processing. Optica, 4, 8-16(2017).

    [4] C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, R. Morandotti. Generation of multiphoton entangled quantum states by means of integrated frequency combs. Science, 351, 1176-1180(2016).

    [5] C. Xu, F. W. Wise. Recent advances in fiber lasers for nonlinear microscopy. Nat. Photonics, 7, 875-882(2013).

    [6] D. D. Hickstein, D. R. Carlson, H. Mundoor, J. B. Khurgin, K. Srinivasan, D. Westly, A. Kowligy, I. I. Smalyukh, S. A. Diddams, S. B. Papp. Self-organized nonlinear gratings for ultrafast nanophotonics. Nat. Photonics, 13, 494-499(2019).

    [7] G. Wrigge, I. Gerhardt, J. Hwang, G. Zumofen, V. Sandoghdar. Efficient coupling of photons to a single molecule and the observation of its resonance fluorescence. Nat. Phys., 4, 60-66(2008).

    [8] J. Yuan, X. Sang, Q. Wu, G. Zhou, F. Li, X. Zhou, C. Yu, K. Wang, B. Yan, Y. Han, H. Y. Tam, P. K. A. Wai. Enhanced intermodal four-wave mixing for visible and near-infrared wavelength generation in a photonic crystal fiber. Opt. Lett., 40, 1338-1341(2015).

    [9] M. I. M. A. Khudus, T. Lee, F. De Lucia, C. Corbari, P. Sazio, P. Horak, G. Brambilla. All-fiber fourth and fifth harmonic generation from a single source. Opt. Express, 24, 21777-21793(2016).

    [10] Y. Wang, T. Lee, F. De Lucia, M. I. M. A. Khudus, P. J. A. Sazio, M. Beresna, G. Brambilla. All-fiber sixth harmonic generation of deep UV. Opt. Lett., 42, 4671-4674(2017).

    [11] X. Guo, C.-L. Zou, H. X. Tang. Second-harmonic generation in aluminum nitride microrings with 2500%/W conversion efficiency. Optica, 3, 1126-1131(2016).

    [12] S. Signorini, M. Mancinelli, M. Borghi, M. Bernard, M. Ghulinyan, G. Pucker, L. Pavesi. Intermodal four-wave mixing in silicon waveguides. Photon. Res., 6, 805-814(2018).

    [13] J. B. Surya, X. Guo, C.-L. Zou, H. X. Tang. Efficient third-harmonic generation in composite aluminum nitride/silicon nitride microrings. Optica, 5, 103-108(2018).

    [14] M. Corona, K. Garay-Palmett, A. B. U’Ren. Experimental proposal for the generation of entangled photon triplets by third-order spontaneous parametric downconversion in optical fibers. Opt. Lett., 36, 190-192(2011).

    [15] A. Dot, A. Borne, B. Boulanger, K. Bencheikh, J. A. Levenson. Quantum theory analysis of triple photons generated by a χ(3) process. Phys. Rev. A, 85, 023809(2012).

    [16] S. Afshar, M. A. Lohe, T. Lee, T. M. Monro, N. G. R. Broderick. Efficient third and one-third harmonic generation in nonlinear waveguides. Opt. Lett., 38, 329-331(2013).

    [17] J. W. Silverstone, D. Bonneau, J. L. O’Brien, M. G. Thompson. Silicon quantum photonics. IEEE J. Sel. Top. Quantum Electron., 22, 390-402(2016).

    [18] M. Baumgartl, J. Abreu-Afonso, A. Dìez, M. Rothhardt, J. Limpert, A. Tünnermann. Environmentally stable picosecond Yb fiber laser with low repetition rate. Appl. Phys. B, 111, 39-43(2013).

    [19] A. Agnesi, L. Carrá, F. Pirzio, R. Piccoli, G. Reali. Low repetition rate, hybrid fiber/solid-state, 1064  nm picosecond master oscillator power amplifier laser system. J. Opt. Soc. Am. B, 30, 2960-2965(2013).

    [20] M. Baumgartl, T. Gottschall, J. Abreu-Afonso, A. Díez, T. Meyer, B. Dietzek, M. Rothhardt, J. Popp, J. Limpert, A. Tünnermann. Alignment-free, all-spliced fiber laser source for CARS microscopy based on four-wave-mixing. Opt. Express, 20, 21010-21018(2012).

    [21] A. Agnesi, L. Carrà, C. Di Marco, R. Piccoli, G. Reali. Fourier-limited 19-ps Yb-fiber seeder stabilized by spectral filtering and tunable between 1015 and 1085 nm. IEEE Photon. Technol. Lett., 24, 927-929(2012).

    [22] J. Liu, J. Xu, P. Wang. High repetition-rate narrow bandwidth SESAM mode-locked Yb-doped fiber lasers. IEEE Photon. Technol. Lett., 24, 539-541(2012).

    [23] Y. Wang, B.-L. Lu, X. Y. Qi, L. Hou, J. Kang, K.-X. Huang, X.-Q. Feng, D.-L. Zhang, H.-W. Chen, J.-T. Bai. Environmentally stable pulse energy-tunable picosecond fiber laser. IEEE Photon. Technol. Lett., 29, 150-153(2017).

    [24] Q. Lu, J. Ma, D. Duan, X. Lin, Q. Mao. Reducing the pulse repetition rate of picosecond dissipative soliton passively mode-locked fiber laser. Opt. Express, 27, 2809-2816(2019).

    [25] C. M. Harvey, F. Yu, J. C. Knight, W. J. Wadsworth, P. J. Almeida. Reduced repetition rate Yb3+ mode-locked picosecond fiber laser with hollow core fiber. IEEE Photon. Technol. Lett., 28, 669-672(2016).

    [26] S. Boivinet, J.-B. Lecourt, Y. Hernandez, A. A. Fotiadi, M. Wuilpart, P. Mégret. All-fiber 1-μm PM mode-lock laser delivering picosecond pulses at sub-MHz repetition rate. IEEE Photon. Technol. Lett., 26, 2256-2259(2014).

    [27] I. A. Litago, D. Leandro, M. Á. Quintela, R. A. Pérez-Herrera, M. López-Amo, J. M. López-Higuera. Tunable SESAM-based mode-locked soliton fiber laser in linear cavity by axial-strain applied to an FBG. J. Lightwave Technol., 35, 5003-5009(2017).

    [28] T. Wang, Z. Yan, C. Mou, Z. Liu, Y. Liu, K. Zhou, L. Zhang. Narrow bandwidth passively mode locked picosecond erbium doped fiber laser using a 45° tilted fiber grating device. Opt. Express, 25, 16708-16714(2017).

    [29] M. Kues, C. Reimer, B. Wetzel, P. Roztocki, B. E. Little, S. T. Chu, T. Hansson, E. A. Viktorov, D. J. Moss, R. Morandotti. Passively mode-locked laser with an ultra-narrow spectral width. Nat. Photonics, 11, 159-162(2017).

    [30] P. Grelu, N. Akhmediev. Dissipative solitons for mode-locked laser. Nat. Photonics, 6, 84-92(2012).

    [31] J. Lægsgaard. Control of fibre laser mode-locking by narrow-band Bragg gratings. J. Phys. B, 41, 095401(2008).

    [32] X. Zhang, F. Li, K. Nakkeeran, J. Yuan, Z. Kang, J. N. Kutz, P. K. A. Wai. Impact of spectral filtering on multipulsing instability in mode-locked fiber lasers. IEEE J. Sel. Top. Quantum Electron., 24, 1101309(2018).

    [33] M. Alsaleh, T. Uthayakumar, E. T. Felenou, P. T. Dinda, P. Grelu, K. Porsezian. Pulse breaking through spectral filtering in dispersion-managed fiber lasers. J. Opt. Soc. Am. B, 35, 276-283(2018).

    [34] M. S. Kang, N. Y. Joly, P. St. J. Russell. Passive mode-locking of fiber ring laser at the 337th harmonic using gigahertz acoustic core resonances. Opt. Lett., 38, 561-563(2013).

    [35] H. A. Haus. Mode-locking of lasers. IEEE J. Sel. Top. Quantum Electron., 6, 1173-1185(2000).

    [36] G. Agrawal. Nonlinear Fiber Optics(2013).

    [37] X. Li, X. Kiu, X. Hu, L. Wang, H. Lu, Y. Wang, W. Zhao. Long-cavity passively mode-locked fiber ring laser with high-energy rectangular-shape pulses in anomalous dispersion regime. Opt. Lett., 35, 3249-3251(2010).

    [38] X. Zhang, C. Gu, G. Chen, B. Sun, L. Xu, A. Wang, H. Ming. Square-wave pulse with ultra-wide tuning range in a passively mode-locked fiber laser. Opt. Lett., 37, 1334-1336(2012).

    [39] L. A. Rodrigues-Morales, I. Armas-Rivera, B. Ibarra-Escamilla, O. Pottiez, H. Santiago-Hernandez, M. Durán-Sánchez, M. V. Andrés, E. A. Kuzin. Long cavity ring fiber mode-locked laser with decreased net value of nonlinear polarization rotation. Opt. Express, 27, 14030-14040(2019).

    [40] A. Chong, J. Buckley, W. Renninger, F. Wise. All-normal-dispersion femtosecond fiber laser. Opt. Express, 14, 10095-10100(2006).

    [41] A. Chong, W. H. Renninger, F. W. Wise. Properties of normal-dispersion femtosecond fiber lasers. J. Opt. Soc. Am. B, 25, 140-148(2008).

    [42] W. H. Renninger, A. Chong, F. W. Wise. Dissipative solitons in normal-dispersion fiber lasers. Phys. Rev. A, 77, 023814(2008).

    [43] R. Paschotta. Timing jitter and phase noise of mode-locked fiber lasers. Opt. Express, 18, 5041-5054(2010).

    [44] F. Krausz, T. Brabec, C. Spielmann. Self-starting passive mode locking. Opt. Lett., 16, 235-237(1991).

    [45] R. Grange, M. Haiml, R. Paschotta, G. J. Spühler, L. Krainer, M. Golling, O. Ostinelli, U. Keller. New regime of inverse saturable absorption for self-stabilizing passively mode-locked lasers. Appl. Phys. B, 80, 151-158(2005).

    [46] M. Endo, T. D. Shoji, T. R. Schibli. High-sensitivity optical to microwave comparison with dual-output Mach-Zehnder modulators. Sci. Rep., 8, 4388(2018).

    [47] K. Jung, J. Kim. Sub-femtosecond synchronization of microwave oscillators with mode-locked Er-fiber lasers. Opt. Lett., 37, 2958-2960(2012).

    [48] J. Kim, Y. Song. Ultralow-noise mode-locked fiber lasers and frequency combs: principles, status, and applications. Adv. Opt. Photon., 8, 465-540(2016).

    [49] E. J. Lee, S. Y. Choi, H. Jeong, N. H. Park, W. Yim, M. H. Kim, J.-K. Park, S. Son, S. Bae, S. J. Kim, K. Lee, Y. H. Ahn, K. J. Ahn, B. H. Hong, J.-Y. Park, F. Rotermund, D.-I. Yeom. Active control of all-fibre graphene devices with electrical gating. Nat. Commun., 6, 6851(2015).

    [50] V. Grubsky, A. Savchenko. Glass micro-fibers for efficient third harmonic generation. Opt. Express, 13, 6798-6806(2005).

    [51] J. Lægsgaard. Theory of surface second-harmonic generation in silica nanowires. J. Opt. Soc. Am. B, 27, 1317-1324(2010).

    [52] R. Weill, A. Bekker, V. Smulakovsky, B. Fischer, O. Gat. Noise-mediated Casimir-like pulse interaction mechanism in lasers. Optica, 3, 189-192(2016).

    [53] K. Sulimany, O. Lib, G. Masri, A. Klein, M. Fridman, P. Grelu, O. Gat, H. Steinberg. Bidirectional soliton rain dynamics induced by Casimir-like interactions in a graphene mode-locked fiber laser. Phys. Rev. Lett., 121, 133902(2018).

    [54] K. S. Lee, C. K. Ha, K. J. Moon, D. S. Han, M. S. Kang. Tailoring of multi-pulse dynamics in mode-locked laser via optoacoustic manipulation of quasi-continuous-wave background. Commun. Phys., 2, 141(2019).

    CLP Journals

    [1] Luqi Yuan, Avik Dutt, Mingpu Qin, Shanhui Fan, Xianfeng Chen, "Creating locally interacting Hamiltonians in the synthetic frequency dimension for photons," Photonics Res. 8, B8 (2020)

    Chang Kyun Ha, Ki Sang Lee, Dohyeon Kwon, Myeong Soo Kang, "Widely tunable ultra-narrow-linewidth dissipative soliton generation at the telecom band," Photonics Res. 8, 1100 (2020)
    Download Citation