• Photonics Research
  • Vol. 8, Issue 7, 1100 (2020)
Chang Kyun Ha1, Ki Sang Lee1, Dohyeon Kwon2, and Myeong Soo Kang1、*
Author Affiliations
  • 1Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
  • 2School of Mechanical and Aerospace Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
  • show less
    DOI: 10.1364/PRJ.389080 Cite this Article Set citation alerts
    Chang Kyun Ha, Ki Sang Lee, Dohyeon Kwon, Myeong Soo Kang. Widely tunable ultra-narrow-linewidth dissipative soliton generation at the telecom band[J]. Photonics Research, 2020, 8(7): 1100 Copy Citation Text show less
    References

    [1] W. Fu, L. G. Wright, P. Sidorenko, S. Backus, F. W. Wise. Several new directions for ultrafast fiber lasers. Opt. Express, 26, 9432-9463(2018).

    [2] S. T. Le, V. Aref, H. Buelow. Nonlinear signal multiplexing for communication beyond the Kerr nonlinearity limit. Nat. Photonics, 11, 570-576(2017).

    [3] J. M. Lukens, P. Lougovski. Frequency-encoded photonic qubits for scalable quantum information processing. Optica, 4, 8-16(2017).

    [4] C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, R. Morandotti. Generation of multiphoton entangled quantum states by means of integrated frequency combs. Science, 351, 1176-1180(2016).

    [5] C. Xu, F. W. Wise. Recent advances in fiber lasers for nonlinear microscopy. Nat. Photonics, 7, 875-882(2013).

    [6] D. D. Hickstein, D. R. Carlson, H. Mundoor, J. B. Khurgin, K. Srinivasan, D. Westly, A. Kowligy, I. I. Smalyukh, S. A. Diddams, S. B. Papp. Self-organized nonlinear gratings for ultrafast nanophotonics. Nat. Photonics, 13, 494-499(2019).

    [7] G. Wrigge, I. Gerhardt, J. Hwang, G. Zumofen, V. Sandoghdar. Efficient coupling of photons to a single molecule and the observation of its resonance fluorescence. Nat. Phys., 4, 60-66(2008).

    [8] J. Yuan, X. Sang, Q. Wu, G. Zhou, F. Li, X. Zhou, C. Yu, K. Wang, B. Yan, Y. Han, H. Y. Tam, P. K. A. Wai. Enhanced intermodal four-wave mixing for visible and near-infrared wavelength generation in a photonic crystal fiber. Opt. Lett., 40, 1338-1341(2015).

    [9] M. I. M. A. Khudus, T. Lee, F. De Lucia, C. Corbari, P. Sazio, P. Horak, G. Brambilla. All-fiber fourth and fifth harmonic generation from a single source. Opt. Express, 24, 21777-21793(2016).

    [10] Y. Wang, T. Lee, F. De Lucia, M. I. M. A. Khudus, P. J. A. Sazio, M. Beresna, G. Brambilla. All-fiber sixth harmonic generation of deep UV. Opt. Lett., 42, 4671-4674(2017).

    [11] X. Guo, C.-L. Zou, H. X. Tang. Second-harmonic generation in aluminum nitride microrings with 2500%/W conversion efficiency. Optica, 3, 1126-1131(2016).

    [12] S. Signorini, M. Mancinelli, M. Borghi, M. Bernard, M. Ghulinyan, G. Pucker, L. Pavesi. Intermodal four-wave mixing in silicon waveguides. Photon. Res., 6, 805-814(2018).

    [13] J. B. Surya, X. Guo, C.-L. Zou, H. X. Tang. Efficient third-harmonic generation in composite aluminum nitride/silicon nitride microrings. Optica, 5, 103-108(2018).

    [14] M. Corona, K. Garay-Palmett, A. B. U’Ren. Experimental proposal for the generation of entangled photon triplets by third-order spontaneous parametric downconversion in optical fibers. Opt. Lett., 36, 190-192(2011).

    [15] A. Dot, A. Borne, B. Boulanger, K. Bencheikh, J. A. Levenson. Quantum theory analysis of triple photons generated by a χ(3) process. Phys. Rev. A, 85, 023809(2012).

    [16] S. Afshar, M. A. Lohe, T. Lee, T. M. Monro, N. G. R. Broderick. Efficient third and one-third harmonic generation in nonlinear waveguides. Opt. Lett., 38, 329-331(2013).

    [17] J. W. Silverstone, D. Bonneau, J. L. O’Brien, M. G. Thompson. Silicon quantum photonics. IEEE J. Sel. Top. Quantum Electron., 22, 390-402(2016).

    [18] M. Baumgartl, J. Abreu-Afonso, A. Dìez, M. Rothhardt, J. Limpert, A. Tünnermann. Environmentally stable picosecond Yb fiber laser with low repetition rate. Appl. Phys. B, 111, 39-43(2013).

    [19] A. Agnesi, L. Carrá, F. Pirzio, R. Piccoli, G. Reali. Low repetition rate, hybrid fiber/solid-state, 1064  nm picosecond master oscillator power amplifier laser system. J. Opt. Soc. Am. B, 30, 2960-2965(2013).

    [20] M. Baumgartl, T. Gottschall, J. Abreu-Afonso, A. Díez, T. Meyer, B. Dietzek, M. Rothhardt, J. Popp, J. Limpert, A. Tünnermann. Alignment-free, all-spliced fiber laser source for CARS microscopy based on four-wave-mixing. Opt. Express, 20, 21010-21018(2012).

    [21] A. Agnesi, L. Carrà, C. Di Marco, R. Piccoli, G. Reali. Fourier-limited 19-ps Yb-fiber seeder stabilized by spectral filtering and tunable between 1015 and 1085 nm. IEEE Photon. Technol. Lett., 24, 927-929(2012).

    [22] J. Liu, J. Xu, P. Wang. High repetition-rate narrow bandwidth SESAM mode-locked Yb-doped fiber lasers. IEEE Photon. Technol. Lett., 24, 539-541(2012).

    [23] Y. Wang, B.-L. Lu, X. Y. Qi, L. Hou, J. Kang, K.-X. Huang, X.-Q. Feng, D.-L. Zhang, H.-W. Chen, J.-T. Bai. Environmentally stable pulse energy-tunable picosecond fiber laser. IEEE Photon. Technol. Lett., 29, 150-153(2017).

    [24] Q. Lu, J. Ma, D. Duan, X. Lin, Q. Mao. Reducing the pulse repetition rate of picosecond dissipative soliton passively mode-locked fiber laser. Opt. Express, 27, 2809-2816(2019).

    [25] C. M. Harvey, F. Yu, J. C. Knight, W. J. Wadsworth, P. J. Almeida. Reduced repetition rate Yb3+ mode-locked picosecond fiber laser with hollow core fiber. IEEE Photon. Technol. Lett., 28, 669-672(2016).

    [26] S. Boivinet, J.-B. Lecourt, Y. Hernandez, A. A. Fotiadi, M. Wuilpart, P. Mégret. All-fiber 1-μm PM mode-lock laser delivering picosecond pulses at sub-MHz repetition rate. IEEE Photon. Technol. Lett., 26, 2256-2259(2014).

    [27] I. A. Litago, D. Leandro, M. Á. Quintela, R. A. Pérez-Herrera, M. López-Amo, J. M. López-Higuera. Tunable SESAM-based mode-locked soliton fiber laser in linear cavity by axial-strain applied to an FBG. J. Lightwave Technol., 35, 5003-5009(2017).

    [28] T. Wang, Z. Yan, C. Mou, Z. Liu, Y. Liu, K. Zhou, L. Zhang. Narrow bandwidth passively mode locked picosecond erbium doped fiber laser using a 45° tilted fiber grating device. Opt. Express, 25, 16708-16714(2017).

    [29] M. Kues, C. Reimer, B. Wetzel, P. Roztocki, B. E. Little, S. T. Chu, T. Hansson, E. A. Viktorov, D. J. Moss, R. Morandotti. Passively mode-locked laser with an ultra-narrow spectral width. Nat. Photonics, 11, 159-162(2017).

    [30] P. Grelu, N. Akhmediev. Dissipative solitons for mode-locked laser. Nat. Photonics, 6, 84-92(2012).

    [31] J. Lægsgaard. Control of fibre laser mode-locking by narrow-band Bragg gratings. J. Phys. B, 41, 095401(2008).

    [32] X. Zhang, F. Li, K. Nakkeeran, J. Yuan, Z. Kang, J. N. Kutz, P. K. A. Wai. Impact of spectral filtering on multipulsing instability in mode-locked fiber lasers. IEEE J. Sel. Top. Quantum Electron., 24, 1101309(2018).

    [33] M. Alsaleh, T. Uthayakumar, E. T. Felenou, P. T. Dinda, P. Grelu, K. Porsezian. Pulse breaking through spectral filtering in dispersion-managed fiber lasers. J. Opt. Soc. Am. B, 35, 276-283(2018).

    [34] M. S. Kang, N. Y. Joly, P. St. J. Russell. Passive mode-locking of fiber ring laser at the 337th harmonic using gigahertz acoustic core resonances. Opt. Lett., 38, 561-563(2013).

    [35] H. A. Haus. Mode-locking of lasers. IEEE J. Sel. Top. Quantum Electron., 6, 1173-1185(2000).

    [36] G. Agrawal. Nonlinear Fiber Optics(2013).

    [37] X. Li, X. Kiu, X. Hu, L. Wang, H. Lu, Y. Wang, W. Zhao. Long-cavity passively mode-locked fiber ring laser with high-energy rectangular-shape pulses in anomalous dispersion regime. Opt. Lett., 35, 3249-3251(2010).

    [38] X. Zhang, C. Gu, G. Chen, B. Sun, L. Xu, A. Wang, H. Ming. Square-wave pulse with ultra-wide tuning range in a passively mode-locked fiber laser. Opt. Lett., 37, 1334-1336(2012).

    [39] L. A. Rodrigues-Morales, I. Armas-Rivera, B. Ibarra-Escamilla, O. Pottiez, H. Santiago-Hernandez, M. Durán-Sánchez, M. V. Andrés, E. A. Kuzin. Long cavity ring fiber mode-locked laser with decreased net value of nonlinear polarization rotation. Opt. Express, 27, 14030-14040(2019).

    [40] A. Chong, J. Buckley, W. Renninger, F. Wise. All-normal-dispersion femtosecond fiber laser. Opt. Express, 14, 10095-10100(2006).

    [41] A. Chong, W. H. Renninger, F. W. Wise. Properties of normal-dispersion femtosecond fiber lasers. J. Opt. Soc. Am. B, 25, 140-148(2008).

    [42] W. H. Renninger, A. Chong, F. W. Wise. Dissipative solitons in normal-dispersion fiber lasers. Phys. Rev. A, 77, 023814(2008).

    [43] R. Paschotta. Timing jitter and phase noise of mode-locked fiber lasers. Opt. Express, 18, 5041-5054(2010).

    [44] F. Krausz, T. Brabec, C. Spielmann. Self-starting passive mode locking. Opt. Lett., 16, 235-237(1991).

    [45] R. Grange, M. Haiml, R. Paschotta, G. J. Spühler, L. Krainer, M. Golling, O. Ostinelli, U. Keller. New regime of inverse saturable absorption for self-stabilizing passively mode-locked lasers. Appl. Phys. B, 80, 151-158(2005).

    [46] M. Endo, T. D. Shoji, T. R. Schibli. High-sensitivity optical to microwave comparison with dual-output Mach-Zehnder modulators. Sci. Rep., 8, 4388(2018).

    [47] K. Jung, J. Kim. Sub-femtosecond synchronization of microwave oscillators with mode-locked Er-fiber lasers. Opt. Lett., 37, 2958-2960(2012).

    [48] J. Kim, Y. Song. Ultralow-noise mode-locked fiber lasers and frequency combs: principles, status, and applications. Adv. Opt. Photon., 8, 465-540(2016).

    [49] E. J. Lee, S. Y. Choi, H. Jeong, N. H. Park, W. Yim, M. H. Kim, J.-K. Park, S. Son, S. Bae, S. J. Kim, K. Lee, Y. H. Ahn, K. J. Ahn, B. H. Hong, J.-Y. Park, F. Rotermund, D.-I. Yeom. Active control of all-fibre graphene devices with electrical gating. Nat. Commun., 6, 6851(2015).

    [50] V. Grubsky, A. Savchenko. Glass micro-fibers for efficient third harmonic generation. Opt. Express, 13, 6798-6806(2005).

    [51] J. Lægsgaard. Theory of surface second-harmonic generation in silica nanowires. J. Opt. Soc. Am. B, 27, 1317-1324(2010).

    [52] R. Weill, A. Bekker, V. Smulakovsky, B. Fischer, O. Gat. Noise-mediated Casimir-like pulse interaction mechanism in lasers. Optica, 3, 189-192(2016).

    [53] K. Sulimany, O. Lib, G. Masri, A. Klein, M. Fridman, P. Grelu, O. Gat, H. Steinberg. Bidirectional soliton rain dynamics induced by Casimir-like interactions in a graphene mode-locked fiber laser. Phys. Rev. Lett., 121, 133902(2018).

    [54] K. S. Lee, C. K. Ha, K. J. Moon, D. S. Han, M. S. Kang. Tailoring of multi-pulse dynamics in mode-locked laser via optoacoustic manipulation of quasi-continuous-wave background. Commun. Phys., 2, 141(2019).

    CLP Journals

    [1] Luqi Yuan, Avik Dutt, Mingpu Qin, Shanhui Fan, Xianfeng Chen. Creating locally interacting Hamiltonians in the synthetic frequency dimension for photons[J]. Photonics Research, 2020, 8(9): B8

    Chang Kyun Ha, Ki Sang Lee, Dohyeon Kwon, Myeong Soo Kang. Widely tunable ultra-narrow-linewidth dissipative soliton generation at the telecom band[J]. Photonics Research, 2020, 8(7): 1100
    Download Citation