• Chinese Optics Letters
  • Vol. 21, Issue 2, 023701 (2023)
Andrey Alekseevich Ionin, Igor Olegovich Kinyaevskiy, Yuri Mikhailovich Klimachev, Andrey Yurievich Kozlov, Darya Ivanovna Kormashova*, Andrey Alexandrovich Kotkov, Yury Alekseevich Mityagin, Sergey Alexandrovich Savinov, Adilya Maratovna Sagitova, Dmitry Vasilievich Sinitsyn, and Maxim Vladimirovich Ionin
Author Affiliations
  • P. N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow 119991, Russia
  • show less
    DOI: 10.3788/COL202321.023701 Cite this Article Set citation alerts
    Andrey Alekseevich Ionin, Igor Olegovich Kinyaevskiy, Yuri Mikhailovich Klimachev, Andrey Yurievich Kozlov, Darya Ivanovna Kormashova, Andrey Alexandrovich Kotkov, Yury Alekseevich Mityagin, Sergey Alexandrovich Savinov, Adilya Maratovna Sagitova, Dmitry Vasilievich Sinitsyn, Maxim Vladimirovich Ionin. NH3 laser THz emission under optical pumping by “long” (∼100 µs) CO2 laser pulses[J]. Chinese Optics Letters, 2023, 21(2): 023701 Copy Citation Text show less
    Optical scheme of the experiment: 1, 5, CO2 laser rear mirrors; 2, EBSD CO2 laser chamber; 3, 7, 9, plane-parallel BaF2 plates; 4, plane-parallel ZnSe plate; 6, diffraction grating; 8, 22, spherical mirrors; 10, photodetector; 11, power and energy meter; 12, 21, flat mirrors; 13, lens; 14, gas cell input window; 15, gas input channel; 16, output to pressure meter; 17, mirrors of THz cavity; 18, Mylar film; 19, parabolic mirror; 20, quartz plate; 23, detector of THz radiation.
    Fig. 1. Optical scheme of the experiment: 1, 5, CO2 laser rear mirrors; 2, EBSD CO2 laser chamber; 3, 7, 9, plane-parallel BaF2 plates; 4, plane-parallel ZnSe plate; 6, diffraction grating; 8, 22, spherical mirrors; 10, photodetector; 11, power and energy meter; 12, 21, flat mirrors; 13, lens; 14, gas cell input window; 15, gas input channel; 16, output to pressure meter; 17, mirrors of THz cavity; 18, Mylar film; 19, parabolic mirror; 20, quartz plate; 23, detector of THz radiation.
    Pulses of CO2 laser (bottom) and NH3 laser (top) pumped by the line 9R(16). Epulse = 0.59 J.
    Fig. 2. Pulses of CO2 laser (bottom) and NH3 laser (top) pumped by the line 9R(16). Epulse = 0.59 J.
    Pulses of CO2 laser (bottom) and NH3 laser (top) pumped by the line 9R(30). Epulse = 0.91 J.
    Fig. 3. Pulses of CO2 laser (bottom) and NH3 laser (top) pumped by the line 9R(30). Epulse = 0.91 J.
    Dependence of the NH3 laser pulse duration τpulse and the delay time τdelay on the CO2 laser pulse energy for the pump lines 9R(16) and 9R(30).
    Fig. 4. Dependence of the NH3 laser pulse duration τpulse and the delay time τdelay on the CO2 laser pulse energy for the pump lines 9R(16) and 9R(30).
    Spectrum of THz emission obtained for the pump CO2 laser line 9R(30); ammonia pressure 2.5 mbar.
    Fig. 5. Spectrum of THz emission obtained for the pump CO2 laser line 9R(30); ammonia pressure 2.5 mbar.
    Dependence of the NH3 laser output with a wavelength of 90.4 µm on the CO2 laser pulse energy for the 9R(16) pump line at ammonia pressure of 10.0, 5.5, 3.0, and 2.0 mbar.
    Fig. 6. Dependence of the NH3 laser output with a wavelength of 90.4 µm on the CO2 laser pulse energy for the 9R(16) pump line at ammonia pressure of 10.0, 5.5, 3.0, and 2.0 mbar.
    Andrey Alekseevich Ionin, Igor Olegovich Kinyaevskiy, Yuri Mikhailovich Klimachev, Andrey Yurievich Kozlov, Darya Ivanovna Kormashova, Andrey Alexandrovich Kotkov, Yury Alekseevich Mityagin, Sergey Alexandrovich Savinov, Adilya Maratovna Sagitova, Dmitry Vasilievich Sinitsyn, Maxim Vladimirovich Ionin. NH3 laser THz emission under optical pumping by “long” (∼100 µs) CO2 laser pulses[J]. Chinese Optics Letters, 2023, 21(2): 023701
    Download Citation