• Laser & Optoelectronics Progress
  • Vol. 58, Issue 10, 1011013 (2021)
Wenkai Yu1、2、*, Feiyao Tang3, Shuofei1 Wang1、2, and Ning Wei1、2
Author Affiliations
  • 1School of Physics, Beijing Institute of Technology, Beijing 100081, China
  • 2Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement of Ministry of Education, Beijing Institute of Technology, Beijing 100081, China
  • 3School of Computer Science & Technology, Beijing Institute of Technology, Beijing 100081, China
  • show less
    DOI: 10.3788/LOP202158.1011013 Cite this Article Set citation alerts
    Wenkai Yu, Feiyao Tang, Shuofei1 Wang, Ning Wei. Dynamic Single-Pixel Imaging[J]. Laser & Optoelectronics Progress, 2021, 58(10): 1011013 Copy Citation Text show less
    References

    [1] Baird J L. Apparatus for transmitting views or images to a distance: US1699270[P](1929).

    [2] Pratt W K, Kane J, Andrews H C. Hadamard transform image coding[J]. Proceedings of the IEEE, 57, 58-68(1969).

    [3] Sloane N J, Harwit M. Masks for Hadamard transform optics, and weighing designs[J]. Applied Optics, 15, 107-114(1976). http://www.ncbi.nlm.nih.gov/pubmed/20155192

    [4] Zhang Z, Ma X, Zhong J. Single-pixel imaging by means of Fourier spectrum acquisition[J]. Nature Communications, 6, 6225(2015).

    [5] Duarte M F, Davenport M A, Takhar D et al. Single-pixel imaging via compressive sampling[J]. IEEE Signal Processing Magazine, 25, 83-91(2008). http://nar.oxfordjournals.org/external-ref?access_num=10.1109/MSP.2007.914730&link_type=DOI

    [6] Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 52, 1289-1306(2006).

    [7] Shao X P, Liu F, Li W et al. Latest progress in computational imaging technology and application[J]. Laser & Optoelectronics Progress, 57, 020001(2020).

    [8] Shapiro J H. Computational ghost imaging[J]. Physical Review A, 78, 061802(2008).

    [9] Katz O, Bromberg Y, Silberberg Y. Compressive ghost imaging[J]. Applied Physics Letters, 95, 131110(2009).

    [10] Sen P, Chen B, Garg G et al. Dual photography[J]. ACM Transactions on Graphics, 24, 745-755(2005).

    [11] Edgar M P, Gibson G M, Padgett M J. Principles and prospects for single-pixel imaging[J]. Nature Photonics, 13, 13-20(2019). http://www.nature.com/articles/s41566-018-0300-7

    [12] Yu W K, Liu X F, Yao X R et al. Single-photon compressive imaging with some performance benefits over raster scanning[J]. Physics Letters A, 378, 3406-3411(2014). http://www.sciencedirect.com/science/article/pii/S0375960114009451

    [13] Studer V, Bobin J, Chahid M et al. Compressive fluorescence microscopy for biological and hyperspectral imaging[J]. Proceedings of the National Academy of Sciences of the United States of America, 109, E1679-E1687(2012).

    [14] Zhang A X, He Y H, Wu L A et al. Table-top X-ray ghost imaging with ultra-low radiation[J]. Optica, 5, 374-377(2018). http://arxiv.org/abs/1709.01016

    [15] Sefi O, Klein Y, Strizhevsky E et al. X-ray imaging of fast dynamics with single-pixel detector[J]. Optics Express, 28, 24568-24576(2020).

    [16] Howland G A, Dixon P B, Howell J C. Photon-counting compressive sensing laser radar for 3D imaging[J]. Applied Optics, 50, 5917-5920(2011).

    [17] Zhao C Q, Gong W L, Chen M L et al. Ghost imaging lidar via sparsity constraints[J]. Applied Physics Letters, 101, 141123(2012). http://scitation.aip.org/content/aip/journal/apl/101/14/10.1063/1.4757874

    [18] Baraniuk R, Steeghs P. Compressive radar imaging[C]. //2007 IEEE Radar Conference, April 17-20, 2007, Waltham, MA, USA., 128-133(2007).

    [19] Xu R, Li Y C, Xing M D et al. 3-D ghost imaging with microwave radar[C]. //2014 IEEE International Conference on Imaging Systems and Techniques (IST) Proceedings, October 14-17, 2014, Santorini, Greece., 190-194(2014).

    [20] He X Z, Liu C C, Liu B et al. Sparse frequency diverse MIMO radar imaging for off-grid target based on adaptive iterative MAP[J]. Remote Sensing, 5, 631-647(2013). http://www.oalib.com/paper/2543268

    [21] Li D Z, Li X, Qin Y L et al. Radar coincidence imaging: an instantaneous imaging technique with stochastic signals[J]. IEEE Transactions on Geoscience and Remote Sensing, 52, 2261-2277(2014).

    [22] Chan W L, Charan K, Takhar D et al. A single-pixel terahertz imaging system based on compressed sensing[J]. Applied Physics Letters, 93, 121105(2008). http://scitation.aip.org/content/aip/journal/apl/93/12/10.1063/1.2989126

    [23] Edgar M P, Gibson G M, Bowman R W et al. Simultaneous real-time visible and infrared video with single-pixel detectors[J]. Scientific Reports, 5, 10669(2015). http://www.ncbi.nlm.nih.gov/pubmed/26001092

    [24] Gong W L, Han S S. Correlated imaging in scattering media[J]. Optics Letters, 36, 394-396(2011).

    [25] Xu Y K, Liu W T, Zhang E F et al. Is ghost imaging intrinsically more powerful against scattering?[J]. Optics Express, 23, 32993-33000(2015). http://www.opticsinfobase.org/abstract.cfm?uri=oe-23-26-32993

    [26] Sun B, Edgar M P, Bowman R et al. 3D computational imaging with single-pixel detectors[J]. Science, 340, 844-847(2013). http://europepmc.org/abstract/med/23687044

    [27] Soldevila F, Durán V, Clemente P et al. Phase imaging by spatial wavefront sampling[J]. Optica, 5, 164-174(2018). http://www.opticsinfobase.org/optica/abstract.cfm?uri=optica-5-2-164

    [28] Liu R F, Zhao S P, Zhang P et al. Complex wavefront reconstruction with single-pixel detector[J]. Applied Physics Letters, 114, 161901(2019). http://www.researchgate.net/publication/332587854_Complex_wavefront_reconstruction_with_single-pixel_detector/download

    [29] Zhao S P, Chen S Q, Wang X et al. Measuring the complex spectrum of orbital angular momentum and radial index with a single-pixel detector[J]. Optics Letters, 45, 5990-5993(2020). http://www.researchgate.net/publication/345214214_Measuring_the_complex_spectrum_of_orbital_angular_momentum_and_radial_index_with_a_single-pixel_detector

    [30] Clemente P, Durán V, Tajahuerce E et al. Compressive holography with a single-pixel detector[J]. Optics Letters, 38, 2524-2527(2013). http://europepmc.org/abstract/med/23939101

    [31] Zhang H, Cao L C, Jin G F et al. Progress on lensless digital holography imaging based on compressive holographic algorithm[J]. Laser & Optoelectronics Progress, 57, 080001(2020).

    [32] Chan S, Warburton R E, Gariepy G et al. Fast tracking of hidden objects with single-pixel detectors[J]. Electronics Letters, 53, 1005-1008(2017). http://connection.ebscohost.com/c/articles/124291957/fast-tracking-hidden-objects-single-pixel-detectors

    [33] Huynh N, Zhang E, Betcke M et al. Single-pixel optical camera for video rate ultrasonic imaging[J]. Optica, 3, 26-29(2016). http://www.opticsinfobase.org/optica/abstract.cfm?uri=optica-3-1-26

    [34] Chan K W C, O’Sullivan M N, Boyd R W. Optimization of thermal ghost imaging: high-order correlations vs. background subtraction[J]. Optics Express, 18, 5562-5573(2010). http://www.opticsinfobase.org/abstract.cfm?URI=oe-18-6-5562

    [35] Chen S S, Donoho D L, Saunders M A. Atomic decomposition by basis pursuit[J]. SIAM Journal on Scientific Computing, 20, 33-61(1998).

    [36] Pati Y C, Rezaiifar R, Krishnaprasad P S. Orthogonal matching pursuit:recursive function approximation with applications to wavelet decomposition[C]. //Proceedings of 27th Asilomar Conference on Signals, Systems and Computers, November 1-3, 1993, Pacific Grove, CA, USA, 40-44(1993).

    [37] Daubechies I, Defrise M, de Mol C. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint[J]. Communications on Pure and Applied Mathematics, 57, 1413-1457(2004). http://onlinelibrary.wiley.com/doi/epdf/10.1002/cpa.20042

    [38] Wang Y L, Yang J F, Yin W T et al. A new alternating minimization algorithm for total variation image reconstruction[J]. SIAM Journal on Imaging Sciences, 1, 248-272(2008). http://ieeexplore.ieee.org/document/7453900/

    [39] Wu Z W, Qiu X D, Chen L X. Current status and prospect for correlated imaging technique[J]. Laser & Optoelectronics Progress, 57, 060001(2020).

    [40] Ermeydan E Ş, Çankaya İ, Şahin A B. Super-resolution algorithm applied to images acquired at millimeter wave frequency in single pixel and computational ghost imaging configurations[J]. Journal of Electromagnetic Waves and Applications, 33, 2328-2340(2019). http://www.tandfonline.com/doi/full/10.1080/09205071.2019.1678525

    [41] Golay M J E. Multi-slit spectrometry[J]. Journal of the Optical Society of America, 39, 437-444(1949).

    [42] Swift R D, Wattson R B, Jr Decker J A et al. Hadamard transform imager and imaging spectrometer[J]. Applied Optics, 15, 1595-1609(1976).

    [43] Gibson G M, Johnson S D, Padgett M J. Single-pixel imaging 12 years on: a review[J]. Optics Express, 28, 28190-28208(2020).

    [44] Yu W K, Liu X F, Yao X R et al. Complementary compressive imaging for the telescopic system[J]. Scientific Reports, 4, 5834(2014). http://pubmedcentralcanada.ca/pmcc/articles/PMC5376059/

    [45] Yu W K, Yao X R, Liu X F et al. Compressive microscopic imaging with“positive-negative” light modulation[J]. Optics Communications, 371, 105-111(2016). http://www.sciencedirect.com/science/article/pii/S0030401816302383

    [46] Li Y X, Yu W K, Leng J et al. Pseudo-thermal imaging by using sequential-deviations for real-time image reconstruction[J]. Optics Express, 27, 35166-35181(2019). http://www.ncbi.nlm.nih.gov/pubmed/31878690

    [47] Sun M J, Chen W, Liu T F et al. Image retrieval in spatial and temporal domains with a quadrant detector[J]. IEEE Photonics Journal, 9, 1-6(2017). http://ieeexplore.ieee.org/document/8013684/

    [48] Herman M A, Tidman J, Hewitt D et al. A higher-speed compressive sensing camera through multi-diode design[J]. Proceedings of SPIE, 8717, 871706(2013). http://spie.org/Publications/Proceedings/Paper/10.1117/12.2015745

    [49] Sun M J, Meng L T, Edgar M P et al. A Russian Dolls ordering of the Hadamard basis for compressive single-pixel imaging[J]. Scientific Reports, 7, 3464(2017). http://europepmc.org/articles/PMC5471277/

    [50] Yu W K, Liu Y M. Single-pixel imaging with origami pattern construction[J]. Sensors, 19, E5135(2019). http://www.ncbi.nlm.nih.gov/pubmed/31771175

    [51] Yu W K. Super sub-Nyquist single-pixel imaging by means of cake-cutting Hadamard basis sort[J]. Sensors, 19, E4122(2019). http://www.ncbi.nlm.nih.gov/pubmed/31548513

    [52] Vaz P G, Amaral D, Ferreira L F R et al. Image quality of compressive single-pixel imaging using different Hadamard orderings[J]. Optics Express, 28, 11666-11681(2020).

    [53] Yu X, Yang F, Gao B et al. Deep compressive single pixel imaging by reordering Hadamard basis: a comparative study[J]. IEEE Access, 8, 55773-55784(2020). http://www.researchgate.net/publication/339991311_Deep_Compressive_Single_Pixel_Imaging_by_Reordering_Hadamard_Basis_A_Comparative_Study

    [54] Yuan A Y, Feng J, Jiao S M et al. Adaptive and dynamic ordering of illumination patterns with an image dictionary in single-pixel imaging[J]. Optics Communications, 481, 126527(2021). http://www.sciencedirect.com/science/article/pii/S0030401820309457

    [55] Zhang Z B, Wang X Y, Zheng G A et al. Fast Fourier single-pixel imaging via binary illumination[J]. Scientific Reports, 7, 12029(2017). http://www.nature.com/articles/s41598-017-12228-3

    [56] Liang Z Y, Cheng Z D, Liu Y Y et al. Fast Fourier single-pixel imaging based on Sierra-Lite dithering algorithm[J]. Chinese Physics B, 28, 064202(2019). http://cpb.iphy.ac.cn/CN/abstract/abstract74031.shtml

    [57] Rajabi-Ghaleh S, Olyaeefar B, Kheradmand R et al. Ultra-fast vivid computational ghost imaging of still and moving objects by sweeping random patterns[J]. Journal of Optics, 22, 095701(2020). http://iopscience.iop.org/article/10.1088/2040-8986/aba03d

    [58] Xu Z H, Chen W, Penuelas J et al. 1000 fps computational ghost imaging using LED-based structured illumination[J]. Optics Express, 26, 2427-2434(2018). http://www.ncbi.nlm.nih.gov/pubmed/29401782

    [59] Nitta K, Yano Y, Kitada C et al. Fast computational ghost imaging with laser array modulation[J]. Applied Sciences, 9, 4807(2019). http://www.researchgate.net/publication/337187188_Fast_Computational_Ghost_Imaging_with_Laser_Array_Modulation/download

    [60] Lyu M, Wang W, Wang H et al. Deep-learning-based ghost imaging[J]. Scientific Reports, 7, 17865(2017). http://www.ncbi.nlm.nih.gov/pubmed/29259269

    [61] Barbastathis G, Ozcan A, Situ G H. On the use of deep learning for computational imaging[J]. Optica, 6, 921-943(2019). http://www.researchgate.net/publication/334644086_On_the_use_of_deep_learning_for_computational_imaging

    [62] Hu H K, Sun S, Lin H Z et al. Denoising ghost imaging under a small sampling rate via deep learning for tracking and imaging moving objects[J]. Optics Express, 28, 37284-37293(2020). http://www.researchgate.net/publication/346316344_Denoising_ghost_imaging_under_a_small_sampling_rate_via_deep_learning_for_tracking_and_imaging_moving_objects

    [63] Zhang C, Gong W L, Han S S. Improving imaging resolution of shaking targets by Fourier-transform ghost diffraction[J]. Applied Physics Letters, 102, 021111(2013). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6415499

    [64] Li E R, Bo Z W, Chen M L et al. Ghost imaging of a moving target with an unknown constant speed[J]. Applied Physics Letters, 104, 251120(2014).

    [65] Li X H, Deng C J, Chen M L et al. Ghost imaging for an axially moving target with an unknown constant speed[J]. Photonics Research, 3, 153-157(2015).

    [66] Yu W K, Li M F, Yao X R et al. Adaptive compressive ghost imaging based on wavelet trees and sparse representation[J]. Optics Express, 22, 7133-7144(2014).

    [67] Dai H D, Gu G H, He W J et al. Adaptive video compressed sampling in the wavelet domain[J]. Optics & Laser Technology, 81, 90-99(2016). http://www.ingentaconnect.com/content/el/00303992/2016/00000081/00000001/art00014

    [68] Jiang H Z, Zhu S G, Zhao H J et al. Adaptive regional single-pixel imaging based on the Fourier slice theorem[J]. Optics Express, 25, 15118-15130(2017). http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-25-13-15118

    [69] Jiao S M, Sun M J, Gao Y et al. Motion estimation and quality enhancement for a single image in dynamic single-pixel imaging[J]. Optics Express, 27, 12841-12854(2019). http://www.ncbi.nlm.nih.gov/pubmed/31052819

    [70] Zhang Z B, Ye J Q, Deng Q W et al. Image-free real-time detection and tracking of fast moving object using a single-pixel detector[J]. Optics Express, 27, 35394-35401(2019). http://www.ncbi.nlm.nih.gov/pubmed/31878710

    [71] Deng Q W, Zhang Z B, Zhong J G. Image-free real-time 3-D tracking of a fast-moving object using dual-pixel detection[J]. Optics Letters, 45, 4734-4737(2020). http://www.researchgate.net/publication/343204155_Image-free_real-time_3-D_tracking_of_a_fast_moving_object_using_dual-pixel_detection

    [72] Zhang Z B, Li X, Zheng S J et al. Image-free classification of fast-moving objects using “learned” structured illumination and single-pixel detection[J]. Optics Express, 28, 13269-13278(2020). http://www.researchgate.net/publication/340501585_Image-free_classification_of_fast-moving_objects_using_'learned'_structured_illumination_and_single-pixel_detection

    [73] Sun S, Gu J H, Lin H Z et al. Gradual ghost imaging of moving objects by tracking based on cross correlation[J]. Optics Letters, 44, 5594-5597(2019). http://www.ncbi.nlm.nih.gov/pubmed/31730129

    [74] Shi D F, Yin K X, Huang J et al. Fast tracking of moving objects using single-pixel imaging[J]. Optics Communications, 440, 155-162(2019). http://www.sciencedirect.com/science/article/pii/S0030401819300987

    [75] Magaña-Loaiza O S, Howland G A, Malik M et al. Compressive object tracking using entangled photons[J]. Applied Physics Letters, 102, 231104(2013). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6528758

    [76] Yu W K, Yao X R, Liu X F et al. Compressive moving target tracking with thermal light based on complementary sampling[J]. Applied Optics, 54, 4249-4254(2015). http://www.opticsinfobase.org/abstract.cfm?uri=ao-54-13-4249

    [77] Sun S, Lin H Z, Xu Y K et al. Tracking and imaging of moving objects with temporal intensity difference correlation[J]. Optics Express, 27, 27851-27861(2019). http://www.ncbi.nlm.nih.gov/pubmed/31684546

    [78] Gholami-Milani S, Olyaeefar B, Ahmadi-Kandjani S et al. Grayscale and color ghost-imaging of moving objects by memory-enabled, memoryless and compressive sensing algorithms[J]. Journal of Optics, 21, 085709(2019). http://iopscience.iop.org/article/10.1088/2040-8986/ab3063

    [79] Gibson G M, Sun B Q, Edgar M P et al. Real-time imaging of methane gas leaks using a single-pixel camera[J]. Optics Express, 25, 2998-3005(2017). http://www.ncbi.nlm.nih.gov/pubmed/28241517

    [80] Higham C F, Murray-Smith R, Padgett M J et al. Deep learning for real-time single-pixel video[J]. Scientific Reports, 8, 2369(2018). http://www.nature.com/articles/s41598-018-20521-y

    [81] Zhang Y W, Edgar M P, Sun B Q et al. 3D single-pixel video[J]. Journal of Optics, 18, 035203(2016).

    [82] Goldstein T, Xu L N, Kelly K F et al. The STOne transform: multi-resolution image enhancement and compressive video[J]. IEEE Transactions on Image Processing, 24, 5581-5593(2015). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7229297

    [83] Wang C L, Mei X D, Pan L et al. Airborne near infrared three-dimensional ghost imaging LiDAR via sparsity constraint[J]. Remote Sensing, 10, 732-740(2018). http://www.ingentaconnect.com/content/doaj/20724292/2018/00000010/00000005/art00066

    [84] Mei X D, Wang C L, Pan L et al. Experimental demonstration of vehicle-borne near infrared three-dimensional ghost imaging LiDAR[C]. //Conference on Lasers and Electro-Optics, San Jose, California, JW2A.7(2019).

    [85] Ma S, Liu Z T, Wang C L et al. Ghost imaging LiDAR via sparsity constraints using push-broom scanning[J]. Optics Express, 27, 13219-13228(2019). http://www.ncbi.nlm.nih.gov/pubmed/31052850

    [86] Ma S, Hu C Y, Wang C L et al. Multi-scale ghost imaging LiDAR via sparsity constraints using push-broom scanning[J]. Optics Communications, 448, 89-92(2019). http://www.sciencedirect.com/science/article/pii/S0030401819304298

    [87] Watts C M, Shrekenhamer D, Montoya J et al. Terahertz compressive imaging with metamaterial spatial light modulators[J]. Nature Photonics, 8, 605-609(2014). http://www.nature.com/articles/nphoton.2014.139

    [88] Withayachumnankul W, Abbott D. Compressing onto a single pixel[J]. Nature Photonics, 8, 593-594(2014).

    [89] Zhai G J, Yu W K, Wang C. Ultra-sensitive time resolution imaging spectrometer and time resolution imaging method thereof: CN103090971B[P](2013).

    [90] Pian Q, Yao R Y, Sinsuebphon N et al. Compressive hyperspectral time-resolved wide-field fluorescence lifetime imaging[J]. Nature Photonics, 11, 411-414(2017). http://www.nature.com/nphoton/journal/v11/n7/nphoton.2017.82/metrics

    [91] Wang L Z, Xiong Z W, Huang H et al. High-speed hyperspectral video acquisition by combining Nyquist and compressive sampling[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 41, 857-870(2019). http://it.ckcest.cn/portal.php?mod=viewaid=3346326

    [92] Wen C Y, Ren M D, Feng F et al. Compressive sensing for fast 3-D and random-access two-photon microscopy[J]. Optics Letters, 44, 4343-4346(2019). http://www.ncbi.nlm.nih.gov/pubmed/31465401

    [93] Ota S, Horisaki R, Kawamura Y et al. Ghost cytometry[J]. Science, 360, 1246-1251(2018).

    Wenkai Yu, Feiyao Tang, Shuofei1 Wang, Ning Wei. Dynamic Single-Pixel Imaging[J]. Laser & Optoelectronics Progress, 2021, 58(10): 1011013
    Download Citation