[1] D X Lu, W H Fang, Y Y Li et al. Optical coherence tomography: principles and recent developments. Chin Opt, 13, 919-935(2020).
[2] Y Q Huang, Z X Lu, Z M Shao et al. Simultaneous denoising and super-resolution of optical coherence tomography images based on generative adversarial network. Opt Express, 27, 12289-12307(2019).
[3] V Das, S Dandapat, P K Bora. Unsupervised super-resolution of OCT images using generative adversarial network for improved age-related macular degeneration diagnosis. IEEE Sensors J, 20, 8746-8756(2020).
[4] B Qiu, Y F You, Z Y Huang et al. N2NSR‐OCT: simultaneous denoising and super‐resolution in optical coherence tomography images using semisupervised deep learning. J Biophotonics, 14, e202000282(2021).
[5] Y Q Lu, M H Chen, K B Qin et al. Super-resolution reconstruction of OCT image based on pyramid long-range transformer. Chin J Lasers, 50, 1507107(2023).
[6] S T Ke, M H Chen, Z X Zheng et al. Super-resolution reconstruction of optical coherence tomography retinal images by generating adversarial network. Chin J Lasers, 49, 1507203(2022).
[7] Y H Ma, X J Chen, W F Zhu et al. Speckle noise reduction in optical coherence tomography images based on edge-sensitive cGAN. Biomed Opt Express, 9, 5129-5146(2018).
[8] R G Wang, H Lei, J Yang. Self-similarity enhancement network for image super-resolution. Opto-Electron Eng, 49, 210382(2022).
[9] C Ma, Y M Rao, Y Cheng et al. Structure-preserving super resolution with gradient guidance, 7766-7775(2020). https://doi.org/10.1109/CVPR42600.2020.00779
[10] S J Park, H Son, S Cho et al. SRFeat: single image super-resolution with feature discrimination, 455-471(2018). https://doi.org/10.1007/978-3-030-01270-0_27
[11] X T Wang, K Yu, S X Wu et al. ESRGAN: enhanced super-resolution generative adversarial networks, 63-79(2018). https://doi.org/10.1007/978-3-030-11021-5_5
[12] G Q Yao, Z Li, B Bhanu et al. MTKDSR: multi-teacher knowledge distillation for super resolution image reconstruction, 352-358(2022). https://doi.org/10.1109/ICPR56361.2022.9956250
[13] C Y Shu, Y F Liu, J F Gao et al. Channel-wise knowledge distillation for dense prediction, 5291-5300(2021). https://doi.org/10.1109/ICCV48922.2021.00526
[14] T L Zhao, L Hu, Y M Zhang et al. Super-resolution network with information distillation and multi-scale attention for medical CT image. Sensors, 21, 6870(2021).
[15] Q L Wang, B G Wu, P F Zhu et al. ECA-Net: efficient channel attention for deep convolutional neural networks, 11531-11539(2020). https://doi.org/10.1109/CVPR42600.2020.01155
[16] Z D Zhou, C R Zhuge, X W Guan et al. Channel distillation: channel-wise attention for knowledge distillation(2020). https://doi.org/10.48550/arXiv.2006.01683
[17] J Yoo, N Ahn, K A Sohn. Rethinking data augmentation for image super-resolution: a comprehensive analysis and a new strategy, 8372-8381(2020). https://doi.org/10.1109/CVPR42600.2020.00840
[18] C Dong, C C Loy, K M He et al. Learning a deep convolutional network for image super-resolution, 184-199(2014). https://doi.org/10.1007/978-3-319-10593-2_13
[19] Z Hui, X B Gao, Y C Yang et al. Lightweight image super-resolution with information multi-distillation network, 2024-2032(2019). https://doi.org/10.1145/3343031.3351084
[20] J Liu, J Tang, G S Wu. Residual feature distillation network for lightweight image super-resolution, 41-55(2020). https://doi.org/10.1007/978-3-030-67070-2_2
[21] Y B Wang, S H Lin, Y Y Qu et al. Towards compact single image super-resolution via contrastive self-distillation, 1122-1128(2021). https://doi.org/10.24963/ijcai.2021/155
[22] H Bogunović, F Venhuizen, S Klimscha et al. RETOUCH: the retinal OCT fluid detection and segmentation benchmark and challenge. IEEE Trans Med Imaging, 38, 1858-1874(2019).