• Photonics Research
  • Vol. 9, Issue 4, 452 (2021)
Zhenhuan Tian1、2, Qiang Li1、2, Xuzheng Wang1、2, Mingyin Zhang1、2, Xilin Su1、2, Ye Zhang1、2, Yufeng Li1、2, Feng Yun1、2、*, and S. W. Ricky Lee3、4
Author Affiliations
  • 1Shaanxi Provincial Key Laboratory of Photonics & Information Technology, Xi’an Jiaotong University, Xi’an 710049, China
  • 2Solid-State Lighting Engineering Research Center, Xi’an Jiaotong University, Xi’an 710049, China
  • 3Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
  • 4HKUST LED-FPD Technology R&D Center at Foshan, Foshan 528200, China
  • show less
    DOI: 10.1364/PRJ.413069 Cite this Article Set citation alerts
    Zhenhuan Tian, Qiang Li, Xuzheng Wang, Mingyin Zhang, Xilin Su, Ye Zhang, Yufeng Li, Feng Yun, S. W. Ricky Lee. Phosphor-free microLEDs with ultrafast and broadband features for visible light communications[J]. Photonics Research, 2021, 9(4): 452 Copy Citation Text show less
    References

    [1] R. Wan, X. Gao, L. Wang, S. Zhang, X. Chen, Z. Liu, X. Yi, J. Wang, J. Li, W. Zhu, J. Li. Phosphor-free single chip GaN-based white light emitting diodes with a moderate color rendering index and significantly enhanced communications bandwidth. Photon. Res., 8, 1110-1117(2020).

    [2] M. S. Islim, R. X. Ferreira, X. He, E. Xie, S. Videv, S. Viola, S. Watson, N. Bamiedakis, R. V. Penty, I. H. White, A. E. Kelly, E. Gu, H. Haas, M. D. Dawson. Towards 10 Gb/s orthogonal frequency division multiplexing-based visible light communication using a GaN violet micro-LED. Photon. Res., 5, A35-A43(2017).

    [3] S. Rajbhandari, J. J. D. McKendry, J. Herrnsdorf, H. Chun, G. Faulkner, H. Haas, I. M. Watson, D. O’Brien, M. D. Dawson. A review of gallium nitride LEDs for multi-gigabit-per-second visible light data communications. Semicond. Sci. Technol., 32, 023001(2017).

    [4] Z. Liu, C.-H. Lin, B.-R. Hyun, C.-W. Sher, Z. Lv, B. Luo, F. Jiang, T. Wu, C.-H. Ho, H.-C. Kuo, J.-H. He. Micro-light-emitting diodes with quantum dots in display technology. Light Sci. Appl., 9, 83(2020).

    [5] K. S. Kim, J. K. Son, S. N. Lee, Y. J. Sung, H. S. Paek, H. K. Kim, M. Y. Kim, K. H. Ha, H. Y. Ryu, O. H. Nam, T. Jang, Y. J. Park. Characteristics of long wavelength InGaN quantum well laser diodes. Appl. Phys. Lett., 92, 101103(2008).

    [6] S.-N. Lee, H. S. Paek, H. Kim, T. Jang, Y. Park. Monolithic InGaN-based white light-emitting diodes with blue, green, and amber emissions. Appl. Phys. Lett., 92, 081107(2008).

    [7] A. Rashidi, M. Monavarian, A. Aragon, A. Rishinaramangalam, D. Feezell. Nonpolar m-plane InGaN/GaN micro-scale light-emitting diode with 1.5 GHz modulation bandwidth. IEEE Electron Device Lett., 39, 520-523(2018).

    [8] W. Chen, G. Hu, J. Lin, J. Jiang, M. Liu, Y. Yang, G. Hu, Y. Lin, Z. Wu, Y. Liu, B. Zhang. High-performance, single-pyramid micro light-emitting diode with leakage current confinement layer. Appl. Phys. Express, 8, 032102(2015).

    [9] S.-P. Chang, J.-R. Chang, K.-P. Sou, M.-C. Liu, Y.-J. Cheng, H.-C. Kuo, C.-Y. Chang. Electrically driven green, olivine, and amber color nanopyramid light emitting diodes. Opt. Express, 21, 23030-23035(2013).

    [10] S.-W. H. Chen, C.-C. Shen, T. Wu, Z.-Y. Liao, L.-F. Chen, J.-R. Zhou, C.-F. Lee, C.-H. Lin, C.-C. Lin, C.-W. Sher, P.-T. Lee, A.-J. Tzou, Z. Chen, H.-C. Kuo. Full-color monolithic hybrid quantum dot nanoring micro light-emitting diodes with improved efficiency using atomic layer deposition and nonradiative resonant energy transfer. Photon. Res., 7, 416-422(2019).

    [11] J. Zhu, C. Lao, T. Chen, J. Li. 3D-printed woodpile structure for integral imaging and invisibility cloaking. Mater. Des., 191, 108618(2020).

    [12] Y. Huang, G. Tan, F. Gou, M.-C. Li, S.-L. Lee, S.-T. Wu. Prospects and challenges of mini-LED and micro-LED displays. J. Soc. Inf. Disp., 27, 387-401(2019).

    [13] H. L. Minh, D. O. Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, E. T. Won. 100-Mb/s NRZ visible light communications using a postequalized white LED. IEEE Photon. Technol. Lett., 21, 1063-1065(2009).

    [14] J. Grubor, S. Randel, K.-D. Langer, J. W. Walewski. Broadband information broadcasting using LED-based interior lighting. J. Lightwave Technol., 26, 3883-3892(2008).

    [15] W. Feng, V. V. Kuryatkov, S. A. Nikishin, M. Holtz. Selective area epitaxy of InGaN quantum well triangular microrings with a single type of sidewall facets. J. Cryst. Growth, 312, 1717-1720(2010).

    [16] M.-L. Lee, Y.-H. Yeh, S.-J. Tu, P. C. Chen, W.-C. Lai, J.-K. Sheu. White emission from non-planar InGaN/GaN MQW LEDs grown on GaN template with truncated hexagonal pyramids. Opt. Express, 23, A401-A412(2015).

    [17] M. Funato, K. Hayashi, M. Ueda, Y. Kawakami, Y. Narukawa, T. Mukai. Emission color tunable light-emitting diodes composed of InGaN multifacet quantum wells. Appl. Phys. Lett., 93, 021126(2008).

    [18] Y.-H. Ko, J. Song, B. Leung, J. Han, Y.-H. Cho. Multi-color broadband visible light source via GaN hexagonal annular structure. Sci. Rep., 4, 5514(2014).

    [19] Y. C. Sim, S.-H. Lim, Y.-S. Yoo, M.-H. Jang, S. Choi, H.-S. Yeo, K. Y. Woo, S. Lee, H. G. Song, Y.-H. Cho. Three-dimensional GaN dodecagonal ring structures for highly efficient phosphor-free warm white light-emitting diodes. Nanoscale, 10, 4686-4695(2018).

    [20] T. Wu, C.-W. Sher, Y. Lin, C.-F. Lee, S. Liang, Y. Lu, S.-W. H. Chen, W. Guo, H.-C. Kuo, Z. Chen. Mini-LED and micro-LED: promising candidates for the next generation display technology. Appl. Sci., 8, 1557(2018).

    [21] Z. Tian, Y. Li, X. Su, L. Feng, S. Wang, M. Zhang, W. Ding, Q. Li, Y. Zhang, M. Guo, F. Yun, S. W. R. Lee. Growth, characterization, and application of well-defined separated GaN-based pyramid array on micropatterned sapphire substrate. Appl. Phys. Express, 10, 092101(2017).

    [22] H. Yu, L. K. Lee, T. Jung, P. C. Ku. Photoluminescence study of semipolar {101¯1} InGaN/GaN multiple quantum wells grown by selective area epitaxy. Appl. Phys. Lett., 90, 141906(2007).

    [23] A. Chitnis, C. Chen, V. Adivarahan, M. Shatalov, E. Kuokstis, V. Mandavilli, J. Yang, M. A. Khan. Visible light-emitting diodes using a-plane GaN–InGaN multiple quantum wells over r-plane sapphire. Appl. Phys. Lett., 84, 3663-3665(2004).

    [24] W. Feng, V. V. Kuryatkov, A. Chandolu, D. Y. Song, M. Pandikunta, S. A. Nikishin, M. Holtz. Green light emission from InGaN multiple quantum wells grown on GaN pyramidal stripes using selective area epitaxy. J. Appl. Phys., 104, 103530(2008).

    [25] T. Tsuchiya, J. Shimizu, M. Shirai, M. Aoki. InGaAlAs selective-area growth on an InP substrate by metalorganic vapor-phase epitaxy. J. Cryst. Growth, 276, 439-445(2005).

    [26] S. Hwang, N. Han, H. Jeong, J. H. Park, S.-H. Lim, J.-H. Cho, Y.-H. Cho, H. J. Jeong, M. S. Jeong, J. K. Kim. Optical and facet-dependent carrier recombination properties of hendecafacet InGaN/GaN microsized light emitters. Cryst. Growth Des., 17, 3649-3655(2017).

    [27] H. Kim, D.-S. Shin, H.-Y. Ryu, J.-I. Shim. Analysis of time-resolved photoluminescence of InGaN quantum wells using the carrier rate equation. Jpn. J. Appl. Phys., 49, 112402(2010).

    [28] L. Ferrari, J. S. T. Smalley, H. Qian, A. Tanaka, D. Lu, S. Dayeh, Y. Fainman, Z. Liu. Design and analysis of blue InGaN/GaN plasmonic led for high-speed, high-efficiency optical communications. ACS Photon., 5, 3557-3564(2018).

    [29] D. Lu, H. Qian, K. Wang, H. Shen, F. Wei, Y. Jiang, E. E. Fullerton, P. K. L. Yu, Z. Liu. Nanostructuring multilayer hyperbolic metamaterials for ultrafast and bright green InGaN quantum wells. Adv. Mater., 30, 1706411(2018).

    [30] H. Chun, S. Rajbhandari, G. Faulkner, D. Tsonev, E. Xie, J. J. D. McKendry, E. Gu, M. D. Dawson, D. C. O’Brien, H. Haas. LED based wavelength division multiplexed 10 Gb/s visible light communications. J. Lightwave Technol., 34, 3047-8724(2016).

    [31] T. S. Zheleva, W. M. Ashmawi, O.-H. Nam, R. F. Davis. Thermal mismatch stress relaxation via lateral epitaxy in selectively grown GaN structures. Appl. Phys. Lett., 74, 2492-2494(1999).

    [32] M. Kuball, M. Benyoucef, B. Beaumont, P. Gibart. Raman mapping of epitaxial lateral overgrown GaN: stress at the coalescence boundary. J. Appl. Phys., 90, 3656-3658(2001).

    [33] G. Nootz, A. Schulte, L. Chernyak, A. Osinsky, J. Jasinski, M. Benamara, Z. Liliental-Weber. Correlations between spatially resolved Raman shifts and dislocation density in GaN films. Appl. Phys. Lett., 80, 1355-1357(2002).

    [34] H. J. Chang, Y. P. Hsieh, T. T. Chen, Y. F. Chen, C. T. Liang, T. Y. Lin, S. C. Tseng, L. C. Chen. Strong luminescence from strain relaxed InGaN/GaN nanotips for highly efficient light emitters. Opt. Express, 15, 9357-9365(2007).

    [35] V. Fiorentini, F. Bernardini, O. Ambacher. Evidence for nonlinear macroscopic polarization in III–V nitride alloy heterostructures. Appl. Phys. Lett., 80, 1204-1206(2002).

    [36] J.-J. Shi, Z.-Z. Gan. Effects of piezoelectricity and spontaneous polarization on localized excitons in self-formed InGaN quantum dots. J. Appl. Phys., 94, 407-415(2003).

    CLP Journals

    [1] Xue-Feng Jia, Li-Jun Wang, Ning Zhuo, Jin-Chuan Zhang, Shen-Qiang Zhai, Jun-Qi Liu, Shu-Man Liu, Feng-Qi Liu, Zhanguo Wang. Multi-wavelength sampled Bragg grating quantum cascade laser arrays[J]. Photonics Research, 2018, 6(7): 721

    Zhenhuan Tian, Qiang Li, Xuzheng Wang, Mingyin Zhang, Xilin Su, Ye Zhang, Yufeng Li, Feng Yun, S. W. Ricky Lee. Phosphor-free microLEDs with ultrafast and broadband features for visible light communications[J]. Photonics Research, 2021, 9(4): 452
    Download Citation