• Laser & Optoelectronics Progress
  • Vol. 59, Issue 4, 0410006 (2022)
Xuanang You1、*, Peng Zhao1、**, Xiaodong Mu1, Kun Bai1, and Sai Lian2
Author Affiliations
  • 1College of Operational Support, Rocket Force University of Engineering, Xi'an , Shaanxi 710025, China
  • 2College of Microelectronics, Xi'an Jiaotong University, Xi'an , Shaanxi 710049, China
  • show less
    DOI: 10.3788/LOP202259.0410006 Cite this Article Set citation alerts
    Xuanang You, Peng Zhao, Xiaodong Mu, Kun Bai, Sai Lian. Heterogeneous Noise Iris Segmentation Based on Attention Mechanism and Dense Multiscale Features[J]. Laser & Optoelectronics Progress, 2022, 59(4): 0410006 Copy Citation Text show less
    Examples of eye image acquisition in complex scenes. (a) Gaze deviation; (b) absence of iris; (c) eyelash occlusion; (d) iris rotation; (e) blur; (f) hair shade; (g) specular reflection; (h) glasses occlusion
    Fig. 1. Examples of eye image acquisition in complex scenes. (a) Gaze deviation; (b) absence of iris; (c) eyelash occlusion; (d) iris rotation; (e) blur; (f) hair shade; (g) specular reflection; (h) glasses occlusion
    MFFIris-Unet architecture
    Fig. 2. MFFIris-Unet architecture
    Structure of inverted residual block
    Fig. 3. Structure of inverted residual block
    Structure of the modified residual bottleneck unit
    Fig. 4. Structure of the modified residual bottleneck unit
    Spatial-channel parallel attention module architecture
    Fig. 5. Spatial-channel parallel attention module architecture
    Improved Dense-ASPP structure
    Fig. 6. Improved Dense-ASPP structure
    Examples of data enhanced training samples
    Fig. 7. Examples of data enhanced training samples
    Curves of training loss function and precision change at different datasets. (a) CASIA; (b) UBIRIS; (c) MICHE
    Fig. 8. Curves of training loss function and precision change at different datasets. (a) CASIA; (b) UBIRIS; (c) MICHE
    Segmentation results of different methods on MICHE dataset. (a) Original image; (b) ground truth; (c) results of Deeplab V3; (d) results of U-Net; (e) results of RTV-L; (f) results of PI-Unet; (g) results of MFFIris-Unet
    Fig. 9. Segmentation results of different methods on MICHE dataset. (a) Original image; (b) ground truth; (c) results of Deeplab V3; (d) results of U-Net; (e) results of RTV-L; (f) results of PI-Unet; (g) results of MFFIris-Unet
    Segmentation results of different methods on CASIA dataset. (a) Original image; (b) ground truth; (c) results of Deeplab V3; (d) results of U-Net; (e) results of RTV-L; (f) results of PI-Unet; (g) results of MFFIris-Unet
    Fig. 10. Segmentation results of different methods on CASIA dataset. (a) Original image; (b) ground truth; (c) results of Deeplab V3; (d) results of U-Net; (e) results of RTV-L; (f) results of PI-Unet; (g) results of MFFIris-Unet
    Segmentation results of different methods on UBIRIS dataset. (a) Original image; (b) ground truth; (c) results of Deeplab V3; (d) results of U-Net; (e) results of RTV-L; (f) results of PI-Unet; (g) results of MFFIris-Unet
    Fig. 11. Segmentation results of different methods on UBIRIS dataset. (a) Original image; (b) ground truth; (c) results of Deeplab V3; (d) results of U-Net; (e) results of RTV-L; (f) results of PI-Unet; (g) results of MFFIris-Unet
    Histograms of mIoU and average F1 scores on three datasets
    Fig. 12. Histograms of mIoU and average F1 scores on three datasets
    Visualized results predicted by the base model and MFFIris-Unet. (a) Original image; (b) ground truth; (c) results of base method; (d) results of MFFIris-Unet
    Fig. 13. Visualized results predicted by the base model and MFFIris-Unet. (a) Original image; (b) ground truth; (c) results of base method; (d) results of MFFIris-Unet
    MethodDatasetRPF1-ScoremIoU /%Average time /s
    μ /%σ /%μ /%σ /%μ /%σ /%
    Deeplab V3CASIA90.136.6292.804.1293.213.6788.210.56
    UBIRIS85.179.5390.924.0187.556.3279.240.44
    MICHE89.8410.9391.668.1291.188.8984.690.41
    U-NetCASIA91.777.6295.233.5191.785.5887.340.93
    UBIRIS91.967.8290.294.6390.814.9281.920.67
    MICHE88.8613.1390.758.5688.2510.5281.200.66
    RTV-LCASIA80.956.5995.833.9187.554.5878.112.68
    UBIRIS88.239.6685.1610.5885.978.7274.011.15
    MICHE84.5617.6174.2716.8277.1014.7164.211.57
    PI-UnetCASIA93.118.6995.225.3196.535.4194.210.18
    UBIRIS91.877.4391.984.5595.256.2592.310.26
    MICHE93.5210.1193.659.1694.028.5293.530.33
    MFFIris-UnetCASIA92.627.6596.563.6997.144.3694.610.11
    UBIRIS92.876.8792.963.6896.594.1194.280.10
    MICHE94.0510.2193.148.6996.548.6293.630.07
    Table 1. Evaluation index results of different methods on three iris datasets
    MethodParams /106FLOPs /109Storage space /GB
    FCN8s134.2784.990.513
    U-Net26.3662.610.121
    SegNet16.3153.930.123
    Deeplab V318.8626.290.072
    PI-Unet2.861.560.012
    MFFIris-Unet1.450.350.005
    Table 2. Comparison of the number of parameters, computation amount, and storage space of different methods
    MethodDatasetF1-Score /%mIoU /%Average time /sTrain time /hModel size /MB
    BaseCASIA96.9594.400.7669.69
    UBIRIS96.2393.610.6122
    MICHE96.4793.510.5523
    Base+RBU+AttenCASIA96.5693.850.2235.32
    UBIRIS95.2293.440.168
    MICHE95.6293.210.135
    Base+RBU+FPMCASIA96.8994.590.125.55.66
    UBIRIS96.2993.960.0821
    MICHE96.5493.690.1022
    MFFIris-UnetCASIA97.1494.610.1135.66
    UBIRIS96.5994.280.078
    MICHE96.5493.630.105
    Table 3. Results of ablation experiments
    Xuanang You, Peng Zhao, Xiaodong Mu, Kun Bai, Sai Lian. Heterogeneous Noise Iris Segmentation Based on Attention Mechanism and Dense Multiscale Features[J]. Laser & Optoelectronics Progress, 2022, 59(4): 0410006
    Download Citation