• Laser & Optoelectronics Progress
  • Vol. 55, Issue 6, 061408 (2018)
Ning Zhou1、1; , Chengliang Zuo、2*; *; , Zekun Lin2、2; , Mingwen Lan2、2; , Zhixing Dong2、2; , Cheng Ke2、2; , and Junqiu Qi2、2;
Author Affiliations
  • 1 Accelink Technologies Co., Ltd., Wuhan, Hubei 430074, China
  • 2 Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
  • show less
    DOI: 10.3788/LOP55.061408 Cite this Article Set citation alerts
    Ning Zhou, Chengliang Zuo, Zekun Lin, Mingwen Lan, Zhixing Dong, Cheng Ke, Junqiu Qi. Bandwidth of Push-Pull Modulated Distributed Feedback Lasers[J]. Laser & Optoelectronics Progress, 2018, 55(6): 061408 Copy Citation Text show less
    References

    [1] Zhou D B, Bian J, An X et al. 25 Gb/s electroabsorption modulator monolithically integrated with distributed feedback laser[J]. Acta Optica Sinica, 35, s114001(2015).

    [2] Chen X, Zhao J Y, Zhou N et al. Research of distributed feedback laser array using as ONU light sources based on nanoimprint lithography[J]. Acta Optica Sinica, 34, 1113001(2014).

    [3] Radziunas M, Glitzky A, Bandelow U. et al. Improving the modulation bandwidth in semiconductor lasers by passive feedback[J]. IEEE Journal of Selected Topics in Quantum Electronics, 13, 136-142(2007). http://ieeexplore.ieee.org/document/4084546/

    [4] Matsui Y, Pham T, Sudo T. et al. 112-Gb/s WDM link using two directly modulated Al-MQW BH DFB lasers at 56 Gb/s. [C]∥Optical Fiber Communication Conference & Exhibition. Los Angeles, CA, USA, 15216450(2015).

    [5] Hayashi I, Panish M, Foy P. A low-threshold room-temperature injection laser[J]. IEEE Journal of Quantum Electronics, 5, 211-212(1969). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1075759

    [6] Marcenac D D, Nowell M C, Carroll J E. Theory of enhanced amplitude modulation bandwidth in push-pull modulated DFB lasers[J]. IEEE Photonics Technology Letters, 6, 1309-1311(1994). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=334822

    [7] Chen J, Maciejko R, Makino T. Dynamic properties of push-pull DFB semiconductor lasers[J]. IEEE Journal of Quantum Electronics, 32, 2156-2165(1996). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=544763

    [8] Xi Y P, Li X, Huang W P. Time-domain standing-wave approach based on cold cavity modes for simulation of DFB lasers[J]. IEEE Journal of Quantum Electronics, 44, 931-937(2008). http://ieeexplore.ieee.org/document/4633722/

    [9] Li X[M]. Optoelectronic devices: design, modeling, and simulation(2009).

    [10] Zhou N, Li L S, Cao M D et al. Lasing mode stability in nano-imprinted quarter-wavelength phase-shifted distributed feedback laser diodes[J]. Laser & Optoelectronics Progress, 48, 011401(2011).

    [11] Kim B S, Chung Y, Lee J S. An efficient split-step time-domain dynamic modeling of DFB/DBR laser diodes[J]. IEEE Journal of Quantum Electronics, 36, 787-794(2002). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=848349

    [12] Xi Y P, Huang W P, Li X. High-order split-step schemes for time-dependent coupled-wave equations[J]. IEEE Journal of Quantum Electronics, 43, 419-425(2007). http://ieeexplore.ieee.org/document/4168002/

    [13] Qi J Q, Xi Y P, Li X. Enhanced modulation bandwidth by exploiting photon resonance in push-pull modulated DFB lasers. [C]∥International Conference on Numerical Simulation of Optoelectronic Devices, Taipei, Taiwan, China, 127-128(2015).

    Ning Zhou, Chengliang Zuo, Zekun Lin, Mingwen Lan, Zhixing Dong, Cheng Ke, Junqiu Qi. Bandwidth of Push-Pull Modulated Distributed Feedback Lasers[J]. Laser & Optoelectronics Progress, 2018, 55(6): 061408
    Download Citation