• Acta Optica Sinica
  • Vol. 42, Issue 14, 1404001 (2022)
Pingping Yu, Wei Duan, and Yanfeng Jiang*
Author Affiliations
  • Department of Electronic Engineering, School of Internet of Things Engineering, Jiangnan University, Wuxi 214122, Jiangsu , China
  • show less
    DOI: 10.3788/AOS202242.1404001 Cite this Article Set citation alerts
    Pingping Yu, Wei Duan, Yanfeng Jiang. Photoelectric Properties of Self-Powered Photodetectors Based on Se/TiO2 Nanofibers[J]. Acta Optica Sinica, 2022, 42(14): 1404001 Copy Citation Text show less
    References

    [1] Sun Y, Dong T G, Yu L W et al. Planar growth, integration, and applications of semiconducting nanowires[J]. Advanced Materials, 32, 1903945(2019).

    [2] Wang J, Luo L B. Advances in Ga2O3-based solar-blind ultraviolet photodetectors[J]. Chinese Journal of Lasers, 48, 1100001(2021).

    [3] Chen H Y, Liu H, Zhang Z M et al. Nanostructured photodetectors: from ultraviolet to terahertz[J]. Advanced Materials, 28, 403-433(2016).

    [4] Zhai T Y, Li L, Wang X et al. Recent developments in one-dimensional inorganic nanostructures for photodetectors[J]. Advanced Functional Materials, 20, 4233-4248(2010).

    [5] Yao J, Miao X, Wang S et al. Preparation of graphene-MoS2 vertical heterojunction for high-responsivity photodetectors[J]. Laser & Optoelectronics Progress, 58, 1516024(2021).

    [6] Lin Y N, Wu Y D, Cheng H Y et al. Near-infrared integrated photodetector based on PdSe2 nanowires film/Si heterojunction[J]. Acta Optica Sinica, 41, 2125001(2021).

    [7] Chen S H, Qiu L, Cheng H M. Carbon-based fibers for advanced electrochemical energy storage devices[J]. Chemical Reviews, 120, 2811-2878(2020).

    [8] Yang X G, Bao D H, Zhang Y et al. Single crossed heterojunction assembled with quantum-dot-embedded polyaniline nanowires[J]. ACS Photonics, 3, 1256-1264(2016).

    [9] Li X, Li Z Y, Wang L Y et al. Low-voltage continuous electrospinning patterning[J]. ACS Applied Materials & Interfaces, 8, 32120-32131(2016).

    [10] Zheng Z, Gan L, Li H Q et al. A fully transparent and flexible ultraviolet-visible photodetector based on controlled electrospun ZnO-CdO heterojunction nanofiber arrays[J]. Advanced Functional Materials, 25, 5885-5894(2015).

    [11] Gan L, Liao M Y, Li H Q et al. Geometry-induced high performance ultraviolet photodetectors in kinked SnO2 nanowires[J]. Journal of Materials Chemistry C, 3, 8300-8306(2015).

    [12] Zheng Z, Zhuge F W, Wang Y G et al. Decorating perovskite quantum dots in TiO2 nanotubes array for broadband response photodetector[J]. Advanced Functional Materials, 27, 1703115(2017).

    [13] Chen H Y, Lu Y, Li C et al. Multilayer PtSe2/TiO2 NRs Schottky junction for UV photodetector[J]. Acta Optica Sinica, 40, 2025001(2020).

    [14] Ouyang W X, Teng F, Fang X S. High performance BiOCl nanosheets/TiO2 nanotube arrays heterojunction UV photodetector: the influences of self-induced inner electric fields in the BiOCl nanosheets[J]. Advanced Functional Materials, 28, 1707178(2018).

    [15] Manga K K, Wang J Z, Lin M et al. High-performance broadband photodetector using solution-processible PbSe-TiO2-graphene hybrids[J]. Advanced Materials, 24, 1697-1702(2012).

    [16] Zheng W J, Li X C, Dong C X et al. Fabrication of a visible light detector based on a coaxial polypyrrole/TiO2 nanorod heterojunction[J]. RSC Advances, 4, 44868-44871(2014).

    [17] Zheng W J, Dong Y N, Li T T et al. MgO blocking layer induced highly UV responsive TiO2 nanoparticles based self-powered photodetectors[J]. Journal of Alloys and Compounds, 869, 159299(2021).

    [18] Zu X H, Wang H, Yi G B et al. Self-powered UV photodetector based on heterostructured TiO2 nanowire arrays and polyaniline nanoflower arrays[J]. Synthetic Metals, 200, 58-65(2015).

    [19] Xie Y R, Wei L, Li Q H et al. Self-powered solid-state photodetector based on TiO2 nanorod/spiro-MeOTAD heterojunction[J]. Applied Physics Letters, 103, 261109(2013).

    [20] Wang H H, Ma L, Gan M Y et al. Synthesis of polyaniline/HF partially etched-hierarchical porous TiO2 microspheres composite with high electrochemical performance for supercapacitors[J]. Journal of Solid State Electrochemistry, 20, 525-532(2016).

    [21] Zheng L X, Yu P P, Hu K et al. Scalable-production, self-powered TiO2 nanowell-organic hybrid UV photodetectors with tunable performances[J]. ACS Applied Materials & Interfaces, 8, 33924-33932(2016).

    [22] Wang J J, Cao F F, Jiang L et al. High performance photodetectors of individual InSe single crystalline nanowire[J]. Journal of the American Chemical Society, 131, 15602-15603(2009).

    [23] Luo L B, Yang X B, Liang F X et al. Transparent and flexible selenium nanobelt-based visible light photodetector[J]. CrystEngComm, 14, 1942-1947(2012).

    [24] Qin J K, Qiu G, Jian J et al. Controlled growth of a large-size 2D selenium nanosheet and its electronic and optoelectronic applications[J]. ACS Nano, 11, 10222-10229(2017).

    [25] Hu K, Chen H Y, Jiang M M et al. Broadband photoresponse enhancement of a high-performancet-Se microtube photodetector by plasmonic metallic nanoparticles[J]. Advanced Functional Materials, 26, 6641-6648(2016).

    [26] Hu K, Teng F, Zheng L X et al. Binary response Se/ZnO p-n heterojunction UV photodetector with high on/off ratio and fast speed[J]. Laser & Photonics Reviews, 11, 1600257(2017).

    [27] Zheng L, Hu K, Teng F et al. Novel UV-visible photodetector in photovoltaic mode with fast response and ultrahigh photosensitivity employing Se/TiO2 nanotubes heterojunction[J]. Small, 13, 1602448(2017).

    Pingping Yu, Wei Duan, Yanfeng Jiang. Photoelectric Properties of Self-Powered Photodetectors Based on Se/TiO2 Nanofibers[J]. Acta Optica Sinica, 2022, 42(14): 1404001
    Download Citation