• Photonics Research
  • Vol. 12, Issue 5, 959 (2024)
Miao Peng1,2,†, Guangzong Xiao1,3,†,*, Xinlin Chen1,3..., Te Du4, Tengfang Kuang1,3, Xiang Han1,3, Wei Xiong1,3, Gangyi Zhu5, Junbo Yang4, Zhongqi Tan1,3, Kaiyong Yang1,3 and Hui Luo1,3|Show fewer author(s)
Author Affiliations
  • 1College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
  • 2College of Electronic Information and Physics, Central South University of Forestry and Technology, Changsha 410004, China
  • 3Nanhu Laser Laboratory, National University of Defense Technology, Changsha 410021, China
  • 4Center of Material Science, National University of Defense Technology, Changsha 410073, China
  • 5College of Communication and Information Technology, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
  • show less
    DOI: 10.1364/PRJ.517547 Cite this Article Set citation alerts
    Miao Peng, Guangzong Xiao, Xinlin Chen, Te Du, Tengfang Kuang, Xiang Han, Wei Xiong, Gangyi Zhu, Junbo Yang, Zhongqi Tan, Kaiyong Yang, Hui Luo, "Optical trapping-enhanced probes designed by a deep learning approach," Photonics Res. 12, 959 (2024) Copy Citation Text show less
    References

    [1] T. Kuang, R. Huang, W. Xiong. Nonlinear multi-frequency phonon lasers with active levitated optomechanics. Nat. Phys., 19, 414-419(2023).

    [2] T. Li, S. Kheifets, M. G. Raizen. Millikelvin cooling of an optically trapped microsphere in vacuum. Nat. Phys., 7, 527-530(2011).

    [3] X. Shan, F. Wang, D. Wang. Optical tweezers beyond refractive index mismatch using highly doped upconversion nanoparticles. Nat. Nanotechnol., 16, 531-537(2021).

    [4] M. Zhong, X. Wei, J. Zhou. Trapping red blood cells in living animals using optical tweezers. Nat. Commun., 4, 1768(2013).

    [5] P. J. Pauzauskie, A. Radenovic, E. Trepagnier. Optical trapping and integration of semiconductor nanowire assemblies in water. Nat. Mater., 5, 97-101(2006).

    [6] O. M. Maragò, P. H. Jones, P. G. Gucciardi. Optical trapping and manipulation of nanostructures. Nat. Nanotechnol., 8, 807-819(2013).

    [7] F. Hajizadeh, S. S. Reihani. Optimized optical trapping of gold nanoparticles. Opt. Express, 18, 551-559(2010).

    [8] S. Ha, Y. Tang, M. M. van Oene. Single-crystal rutile TiO2 nanocylinders are highly effective transducers of optical force and torque. ACS Photon., 6, 1255-1265(2019).

    [9] M. Peng, H. Luo, W. Xiong. Enhanced optical trapping of ZrO2@TiO2 photonic force probe with broadened solvent compatibility. Opt. Express, 30, 46060-46069(2022).

    [10] C. Min, Z. Shen, J. Shen. Focused plasmonic trapping of metallic particles. Nat. Commun., 4, 2891(2013).

    [11] M. N. Polyanskiy. Refractiveindex.info database of optical constants. Sci. Data, 11, 94(2024).

    [12] V. Bormuth, A. Jannasch, M. Ander. Optical trapping of coated microspheres. Opt. Express, 16, 13831-13844(2008).

    [13] A. van der Horst, P. D. J. van Oostrum, A. Moroz. High trapping forces for high-refractive index particles trapped in dynamic arrays of counterpropagating optical tweezers. Appl. Opt., 47, 3196-3202(2008).

    [14] M. L. Juan, R. Gordon, Y. Pang. Self-induced back-action optical trapping of dielectric nanoparticles. Nat. Phys., 5, 915-919(2009).

    [15] A. Jannasch, A. F. Demirörs, P. D. OostrumVan. Nanonewton optical force trap employing anti-reflection coated, high-refractive-index titania microspheres. Nat. Photonics, 6, 469-473(2012).

    [16] V. Ferro, A. Sonnberger, M. K. Abdosamadi. Improved antireflection coated microspheres for biological applications of optical tweezers. Proc. SPIE, 9922, 99222T(2016).

    [17] S. M. Wang, P. C. Wu, V. C. Su. A broadband achromatic metalens in the visible. Nat. Nanotechnol., 13, 227-232(2018).

    [18] T. Li, X. Xu, B. Fu. Integrating the optical tweezers and spanner onto an individual single-layer metasurface. Photon. Res., 9, 1062-1068(2021).

    [19] G. Qu, W. Yang, Q. Song. Reprogrammable meta-hologram for optical encryption. Nat. Commun., 11, 5484(2020).

    [20] Y. Tang, S. Ha, T. Begou. Versatile multilayer metamaterial nanoparticles with tailored optical constants for force and torque transduction. ACS Nano, 14, 14895-14906(2020).

    [21] D. Andrén, D. G. Baranov, S. Jones. Microscopic metavehicles powered and steered by embedded optical metasurfaces. Nat. Nanotechnol., 16, 970-974(2021).

    [22] O. Ilic, A. A. Harry. Self-stabilizing photonic levitation and propulsion of nanostructured macroscopic objects. Nat. Photonics, 13, 289-295(2019).

    [23] Y. Park, M. Kellis. Deep learning for regulatory genomics. Nat. Biotechnol., 33, 825-826(2015).

    [24] S. Webb. Deep learning for biology. Nature, 554, 555-557(2018).

    [25] P. Baldi, P. Sadowski, D. Whiteson. Searching for exotic particles in high-energy physics with deep learning. Nat. Commun., 5, 4308(2014).

    [26] G. Carleo, M. Troyer. Solving the quantum many-body problem with artificial neural networks. Science, 355, 602-606(2017).

    [27] W. Ma, F. Cheng, Y. Liu. Deep-learning-enabled on-demand design of chiral metamaterials. ACS Nano, 12, 6326-6334(2018).

    [28] Y. Shen, N. C. Harris, S. Skirlo. Deep learning with coherent nanophotonic circuits. Nat. Photonics, 11, 441-446(2017).

    [29] M. Hermans, M. Burm, T. Van Vaerenbergh. Trainable hardware for dynamical computing using error backpropagation through physical media. Nat. Commun., 6, 6729(2015).

    [30] K. Svoboda, S. M. Block. Biological applications of optical forces. Annu. Rev. Biophys. Biomol. Struct., 23, 247-285(1994).

    [31] S. Walheim, E. Schaffer, J. Mlynek. Nanophase-separated polymer films as high-performance antireflection coatings. Science, 283, 520-522(1999).

    [32] A. La Porta, M. D. Wang. Optical torque wrench: angular trapping, rotation, and torque detection of quartz microparticles. Phys. Rev. Lett., 92, 190801(2004).

    [33] W. Cai, M. Vladimir. Optical Metamaterials(2010).

    [34] M. Peng, H. Luo, Z. Zhang. Optical pulling using chiral metalens as a photonic probe. Nanomaterials, 11, 3376(2021).

    [35] Y. Wang, M. Peng, W. Cheng. Manipulation force analysis of nanoparticles with ultra-high numerical aperture metalens. Opt. Express, 30, 28479-28491(2022).

    [36] X. Chen, G. Xiao, W. Xiong. Rotation of an optically trapped vaterite microsphere measured using rotational Doppler effect. Opt. Eng., 57, 036103(2018).

    [37] M. Pei, S. Jin, X. Chen. Direct measurement of the van der Waals force between a pair of microspheres based on photonic force microscopy. Opt. Eng., 60, 084101(2021).

    [38] K. Berg-Sorensen, H. Flyvbjerg. Power spectrum analysis for optical tweezers. Rev. Sci. Instrum., 75, 594-612(2004).

    [39] I. A. Favre-Bulle, A. B. Stilgoe, H. Rubinsztein-Dunlop. Optical trapping of otoliths drives vestibular behaviours in larval zebrafish. Nat. Commun., 8, 630(2017).

    [40] X. Zhang, B. Gu, C. W. Qiu. Force measurement goes to femto-Newton sensitivity of single microscopic particle. Light Sci. Appl., 10, 243(2021).

    [41] I. D. Stoev, B. Seelbinder, E. Erben. Highly sensitive force measurements in an optically generated, harmonic hydrodynamic trap. eLight, 1, 7(2021).

    [42] T. Pan, Y. Shi, N. Zhao. Bio-micromotor tweezers for noninvasive bio-cargo delivery and precise therapy. Adv. Funct. Mater., 32, 2111038(2022).

    [43] M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg. Optical alignment and spinning of laser-trapped microscopic particles. Nature, 394, 348-350(1998).

    [44] H. Crichton, P. Marston. The measurable distinction between the spin and orbital angular momenta of electromagnetic radiation. Electron. J. Differ. Eq., 4, 37-50(2000).

    [45] S. S. Kruk, Z. J. Wong, E. Pshenay-Severin. Magnetic hyperbolic optical metamaterials. Nat. Commun., 7, 11329(2016).

    [46] S. Lang, H. Lee, A. Y. Petrov. Gold-silicon metamaterial with hyperbolic transition in near infrared. Appl. Phys. Lett., 103, 021905(2013).

    [47] P. Kelly, M. Liu, L. Kuznetsova. Designing optical metamaterial with hyperbolic dispersion based on an Al:ZnO/ZnO nano-layered structure using the atomic layer deposition technique. Appl. Opt., 55, 2993-2997(2016).

    [48] F. M. White. Fluid Mechanics(2008).

    Miao Peng, Guangzong Xiao, Xinlin Chen, Te Du, Tengfang Kuang, Xiang Han, Wei Xiong, Gangyi Zhu, Junbo Yang, Zhongqi Tan, Kaiyong Yang, Hui Luo, "Optical trapping-enhanced probes designed by a deep learning approach," Photonics Res. 12, 959 (2024)
    Download Citation