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Realizing optical trapping enhancement is crucial in biomedicine, fundamental physics, and precision measure-
ment. Taking the metamaterials with artificially engineered permittivity as photonic force probes in optical
tweezers will offer unprecedented opportunities for optical trap enhancement. However, it usually involves
multi-parameter optimization and requires lengthy calculations; thereby few studies remain despite decades
of research on optical tweezers. Here, we introduce a deep learning (DL) model to attack this problem. The
DL model can efficiently predict the maximum axial optical stiffness of Si∕Si3N4 (SSN) multilayer metamaterial
nanoparticles and reduce the design duration by about one order of magnitude. We experimentally demonstrate
that the designed SSN nanoparticles show more than twofold and fivefold improvement in the lateral (kx and ky)
and the axial (kz) optical trap stiffness on the high refractive index amorphous TiO2 microsphere. Incorporating
the DL model in optical manipulation systems will expedite the design and optimization processes, providing
a means for developing various photonic force probes with specialized functional behaviors. © 2024 Chinese

Laser Press

https://doi.org/10.1364/PRJ.517547

1. INTRODUCTION

Optical tweezers, which are exquisite displacement and force
transducers, are widely applied in quantum optomechanics
[1,2], biology [3,4], and nanotechnology [5,6]. Small dielectric
particles are typically used as the photonic force probe and
often act as handles for high-resolution measurements.
However, the force range of these particles is usually around
a few pN (with the laser power of tens to hundreds of milli-
watts) [7], hindering the development of techniques and stud-
ies based on it. The optical force relies on the refractive index
mismatch between the photonic force probes and the surround-
ing media. High-refractive-index particles, such as Si, rutile or
anatase TiO2, and ZrO2, have sizeable refractive index mis-
matches [8–11]. However, as the mismatch increases, the in-
stability scattering force increases more strongly than the
gradient force.

Diverse solutions have developed to compensate for the ad-
verse effect of scattering on trapping [12–14]. The simplest way
is to modify the particle surface with an antireflection layer.

Titanium dioxide-coated titania particles can significantly en-
hance optical forces to 1 nN [15]. Nevertheless, the micro-
sphere size suffers tight tolerance since a 10% change in the
shell size would destabilize the trap [16]. In our previous work,
we proposed the ZrO2@TiO2 core-shell nanoparticles to en-
hance the optical trapping in the nanoscale [9]. During the
study, we found that numerous chemical synthesis experiments
are needed to improve the accuracy of particle size. It usually
requires rich experience and dedicated effort from experts in
material engineering. This synthesis protocol is usually time-
consuming and limited by the laboratory environment.
Therefore, a probe design scheme with optical trap enhance-
ment and precise size control is urgently needed to mitigate
such a barrier.

Recent advances in nanofabrication technology have spurred
many breakthroughs in optical metamaterials that can solve the
above challenges [17–19]. Metamaterials are 3D artificial ma-
terials with tailored permittivity that are capable of large-
volume production with high uniformity. The latest works
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show they can act as light-driving objects to enhance optical
torque, construct optical metavehicles, and even explore solar
sails [20–22]. However, most of these are typically governed by
hand-tuning the optical parameters. Manual tuning often takes
hundreds or thousands of simulations before finding a practical
design. Since each simulation is computationally expensive, this
method becomes prohibitively slow as the probe size and com-
plexity grow.

In contrast to manual tuning, the rapidly emerging deep
learning (DL) algorithms can speed up the optimization cycle
and introduce remarkable design flexibility. At present, DL al-
gorithms have emerged as a revolutionary and robust method-
ology in nanophotonics and have been applicated in diverse
fields [23–27]. The critical algorithms of the DL model are ar-
tificial neural networks (NNs) [28,29], which take the input of
the structural parameter and predict the electromagnetic re-
sponse of the probe. These NNs replace the computationally
expensive finite element simulations in the optimization loop,
significantly reducing design time.

This work proposes a DL algorithm to predict the maxi-
mum axial optical stiffness of Si∕Si3N4 multilayer metamaterial
(SSN) nanoparticles with various geometry parameters. The
SSN nanoparticles are fabricated according to the predicted
value and characterized in an optical trap by measuring their
power spectral density (PSD). The trapping properties of the
SSN nanoparticles are superior to homogeneous high refractive
index nanoparticles. This DL network can bypass the obstacles
set by manual tuning, suggesting a new way to train NN for the
optimal design of complex photonic force probes, which is the
fundamental motivation of this study.

2. METHODS

In the Rayleigh regime [30], the gradient force is proportional
to Δn and W 3, and the scattering force is proportional to
Δn2 and W 6. W is the width or diameter of the trapped par-
ticles, and Δn � neff − nm, where nm and neff are the refractive
indices of the surrounding medium and particles. We select
Si (n1 � 3.48), the naturally occurring material with the
highest refractive index, as the primary material to improve
the gradient force. Then, Si3N4 (n2 � 1.98) is selected as
the matching material to decrease the scattering force according
to the design of anti-reflection film [31]. That is, n2 �

p
nmn1.

Meanwhile, we use the cuboid instead of the commonly used
sphere. This geometry decreases light scattering for a fixed vol-
ume of a particle by reducing the surface area encountered by
the input laser beam [32]. Using the effective medium theory
(EMT) [33], the high refractive index Si and Si3N4 are alter-
nately superimposed to form multilayer metamaterial particles
with high neff , thereby increasing Δn to enhance the gra-
dient force.

Figure 1(a) is the schematic diagram of the SSN nanopar-
ticle composed of Si3N4 (blue) and Si (magenta) with its long
axis aligned to the propagation direction (z-axis) of the trapping
beam (light red). The trapping beam is linearly polarized along
the x-axis. The cross-section of the SSN nanoparticle in the
x − y plane is a square with a width of W . The aspect ratio
AR is the ratio of height H to widthW . The ρ is the thickness
ratio of the higher index material layer d 1 and the unit

layer-pair (d 1 � d 2). The value of W ranges from 50 to
500 nm, AR ranges from 1 to 5, and ρ ranges from 0.1 to
0.9. To ensure the structural symmetry of the particles, the
thickness of the Si3N4 films on both sides is half of the normal
thickness. The optics axis (n⊥) of the SSN nanoparticle aligns
with the y-axis, while the axes associated with the higher refrac-
tive index (n∥) align with the x- and z-axes. The optical bire-
fringence in the x − y plane enables active rotary control around
the z-axis (indicated by the blue curved arrow).

Figure 1(b) shows the relationship of the refractive index
(no, ne , neff ), birefractive index (nr), and ρ of SSN nanopar-
ticles. The refractive index along the ordinary axes (no �
n∥ �

p
ε∥) exceeds that along the extraordinary axis (ne �

n⊥ � p
ε⊥), indicating that the SSN nanoparticles are with

a negative uniaxial birefringence (ne < no). ε∥ and ε⊥ are
the permittivity components parallel and perpendicular to
the interfacial surfaces of the SSN nanoparticles, respectively
[33]. The effective index [neff � �ne − no�∕2] varies from
1.98 (that of Si3N4 ) to 3.48 (that of Si), while the birefringence
(nr � jne − noj) can be tuned between zero and its maximum
value (nr � 0.403 when ρ � 0.6). The top-view and side-view
of scanning electron microscope (SEM) images of the SSN
nanoparticles with ρ � 0.2, W � 450 nm, and AR � 2 are
shown in Figs. 1(c) and 1(d), respectively.

We use the finite element method (FEM) solver COMSOL
Multiphysics 5.6 to design the SSN nanoparticle. The optical
force is retrieved by integrating the Maxwell stress tensor
(MST) on a virtual surface enclosing the nanoparticle [34].
We use the grid search algorithm to determine the optimal
ρ to reduce the number of optimized parameters. The kz for
different ρ values is plotted in Fig. 2. The black pixels mean
that the SSN nanoparticles cannot be trapped in these param-
eters. Each parameter search range is ρ � 0.1–0.9, W �
50–500 nm, and AR � 1–5, with the pixel size of
Δρ � 0.1, ΔW � 10 nm, ΔAR � 0.2. The nanoparticles
with ρ � 0.2, 0.4–0.9 are trappable over the entire range
of W and AR. Although the kz of the ρ � 0.4–0.9 nanopar-
ticles can be maximized by selecting nanoparticle sizes in the
bright yellow region at the bottom of the map, in practice their
utilization in 3D trapping is difficult. Due to variations in
nanoparticle sizes during manufacturing, some batches of par-
ticles will lie outside of the bright yellow region, leading to
unstable trapping. Therefore, we selected nanoparticles with
ρ � 0.2 in the DL optimization process. In particular, the
nanoparticles with ρ � 0.1 and 0.3 include continuous non-
trappable regions displayed as black pixels in Figs. 2(a) and
2(c). For the sake of “intelligence,” we select ρ � 0.3 to verify
the accuracy and applicability of the DL network. The maxi-
mum value can still be found accurately in the discontinuous
parameter space.

We perform the DL network based on the NN and particle
swarm optimization (PSO) hybrid optimization (NN-PSO)
algorithm to find the optimal W and AR. First, W and AR
are divided into several grids. As shown in Fig. 3, a random
grid (e.g., W � 250–300 nm, AR � 4 − 5, ΔW � 1 nm,
ΔAR � 0.1, M � 561) is selected as the training set
D1�W i,ARi, kzi�, i � 1, 2,…,M , serving as the input layer
of NN. Subsequently, we establish a mapping between W ,
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AR, and kz to obtain the NNmodel. Then, we randomly select
W 0

i and AR 0
i in D1 and plug them into the NN model to

quickly predict the corresponding k 0zi. These k 0zi are regarded
as the particles of PSO and grouped up as the initial population.
Each k 0zi has velocity vi and position pi (W

0
i , AR 0

i ). The vi de-
termines how fast the k 0zi moves, and the pi determines the di-
rection in which the k 0zi moves. We calculate the fitness Δkzi of
each k 0zi. The Δkzi represents the difference between the cur-
rent k 00zi and the previous k 0zi [35],

Δkzi �
X

W 0
i

X
AR 0

i
jk 00zi�pi�W 0

i ,AR 0
i�� − k 0zi�pi�W 0

i ,AR 0
i��j:
(1)

Next, Δkzi is compared to find the optimal solution of the
k 0zi, which is also called the individual extremum Pi. We share
the Pi with the population and find the global optimal solution
Gj, where j represents the training set number. If the require-
ments are satisfied, the iteration is ended. Otherwise, the vi and
pi of each k 0zi are updated. The algorithm enters the next iter-
ation until the results converge to the optimal point. The vi and
pi are as follows:

vi � w × vi � c1 × rand�0, 1� × �Pi − pi�W i,ARi�� � c2

× rand�0, 1� × �Gj − pi�W i,ARi��, (2)

pi�1�W i�1,ARi�1� � pi�W i,ARi� � vi, (3)

where w is the inertia factor set to 0.5, c1 and c2 are the learning
factors, with values of 0.5, and rand (0, 1) is a random number
in the interval (0, 1).

3. RESULTS AND DISCUSSION

A. Estimation of the NN-PSO Model
We evaluate the performance of the NN-PSO model in pre-
dicting the optimal kz of SSN nanoparticles with ρ � 0.2
and 0.3, with the results shown in Figs. 4(a) and 4(b).
Figure 4(a) shows the optimization process for the SSN nano-
particles at ρ � 0.2. White arrows indicate that we need five
steps to find the globally optimal solution (blue dot). The
circled numbers (① to ⑥) indicate that only six grids need
to be computed to find the optimal kz . The optimal kz
is 1.7 pN μm−1 mW−1, and the optimal parameters are
W � 450 nm, H � 1125 nm, and AR � 2.5.

Figure 4(b) shows the optimization process for the SSN
nanoparticles at ρ � 0.3. Black arrows indicate that we only
need two steps to find the optimal kz . We randomly select grid
① as the initial training set. Since the larger kz in grid ② is near
the right edge, grid ② is chosen as the next training set. The
larger kz in grid ② is concentrated at the bottom of the lower
boundary, indicating the maximum value below grid ②.

Fig. 1. (a) The schematic of the trapped SSN nanoparticle, which is made of Si (magenta) and Si3N4 (blue), with its long axis aligned to the
optical axis (z-axis) of the trapping beam (red). The cross section in the x − y plane is a square of width W , and the aspect ratio AR is the ratio of
height H to width W . (b) The effective refractive indices and birefringence of the SSN nanoparticles as a function of ρ. (c) Top-view and (d) side-
view of SEM images of SSN nanoparticles with ρ � 0.2, W � 450 nm, and AR � 2.
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We calculate grid ③ and grid ④, respectively. The results show
that the global optimal solution is in grid ③ (blue dot). The
predicted kz is 1.6 pN μm−1 mW−1, and the optimal parame-
ters are W � 383 nm, H � 1110.7 nm, AR � 2.9.

B. Trapping Properties of the SSN Nanoparticles
Guided by the results above, we fabricated and characterized
the SSN nanoparticles with ρ � 0.2, whose sizes are
W � 450 nm, H � 1125 nm, and AR � 2.5, and the neff
is 2.24. The fabrication process is shown in Appendix A.
The SEM images of these SSN nanoparticles are shown in
Figs. 1(c) and 1(d). To measure the trapping properties of
the SSN nanoparticles, we then optically trapped them in a
standard optical tweezers system [36,37]. The laser is a linearly
polarized fundamental mode Gaussian beam along the x direc-
tion with power and wavelength as 100 mW and 980 nm, re-
spectively. An oil-immersed objective with a numerical aperture
(NA) of 1.4 is used to ensure the stable trap of nanoparticles.
We developed a homemade sample chamber to match the
working distance of the oil-immersed objective. (The details
are supplemented in Appendix A.) We detected the x- and
y-positions of the trapped nanoparticle by quadrant detectors
(QPDs) and measured the axial (z-) displacement by a differ-
ential detection unit. The optical stiffness is calculated using
the power spectrum analysis method [38]. For comparison,

we trapped a high refractive index (1.75) amorphous TiO2 mi-
crosphere with a radius of 600 nm. (The trapping efficiency is
highest at this radius; see Appendix B.)

We confirm the tight 3D-trapping of the two types of par-
ticles by measuring the PSD, as shown in Fig. 5. We use the
formula k � 2πηf c to calculate the optical trap stiffness, where
η is the viscous drag coefficient [34]. The corner frequency f c is
obtained by fitting the power spectrum with the Lorenz profile.
The 3D f c and optical trap stiffness corresponding to the SSN
and amorphous TiO2 particles are listed in Table 1. Overall,
the lateral (kx and ky) and the axial (kz) optical trap stiffness of
the SSN nanoparticles is twofold and fivefold higher than that
of the amorphous TiO2 microspheres. This difference results
from their higher refractive index contrast (22%) and ensures
a higher optical gradient force for the SSN nanoparticles. In
addition, the rod-shaped SSN nanoparticles decrease the scat-
tering force by reducing the surface area encountered by the
incident light.

The SSN nanoparticles are negative uniaxial birefringent
crystals, and the birefringence-originated torque constrains
only one rotational degree of freedom (RDOF). The drawback
is that unconstrained RDOF may introduce unexpected angu-
lar fluctuations into the displacement signal. The geometric
anisotropy provided by a rod shape can compensate for this

Fig. 2. The relationship between the axial stiffness kz of SSN nanoparticles and the width W , aspect ratio AR under different ρ values.
(a) ρ � 0.1, (b) ρ � 0.2, (c) ρ � 0.3, (d) ρ � 0.4, (e) ρ � 0.5, (f ) ρ � 0.6, (g) ρ � 0.7, (h) ρ � 0.8, (i) ρ � 0.9. The black pixels in the maps
indicate the nanoparticle sizes that cannot be trapped in 3D due to excessive scattering forces.
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Fig. 4. The kz optimization process for ρ � 0.2 (a) and 0.3 (b), respectively. The arrow indicates the route to find the optimal solution. The circle
numbers indicate the number of the grid to be calculated in that route, and the blue dot indicates the optimal solution.

Fig. 3. Architecture of the DL network based on the NN-PSO algorithm, where the input is the size parameters and the output is the kz .

Fig. 5. The x- (a), y- (b), and z- (c) axis power spectral density curves for two types of particles (SSN and TiO2) measured in water.

Research Article Vol. 12, No. 5 / May 2024 / Photonics Research 963



drawback and sufficiently constrain the three RDOFs (Fig. 10
of Appendix C). Further, the influence of spin on kz is analyzed
(Fig. 11 of Appendix C). Figure 5(c) shows an optical beating at
2f γ when the nanoparticle rotates at a spin frequency of
f γ�� 1276 Hz�. We remark that higher harmonics of the fun-
damental rotation frequency of f γ are also observed in the PSD
signal. The Cr fragment or impurity remaining on the SSN
nanoparticle surface leads to the uneven distribution of the scat-
tered and transmitted light, resulting in variations in the photo-
diode signal.

4. CONCLUSION

In this study, we have introduced the deep learning algorithm
in the design of optical trapping-enhanced probes. The deep
learning algorithm provides a time-saving way to replace the
computationally expensive FEM simulations in the optimiza-
tion loop, reducing the design duration by about one order of
magnitude. Notably, we have achieved at least a twofold and
fivefold improvement in the lateral (kx and ky) and the axial
(kz) optical trap stiffness, respectively, compared to the amor-
phous TiO2 microsphere in water.

We envision several compelling extensions of this work. For
example, one can precisely control the particle size using ad-
vanced thin-film deposition and lithography techniques.
This strategy can bypass the limitation set by the size tolerance
originating from the chemical synthesis scheme [16], sug-
gesting a new way to fabricate probes on the nanoscale. On

the other hand, the biochemical inertness, insolubility of
Si∕Si3N4 nanoparticles, together with their optical trap en-
hancement characteristics, will facilitate their application in
in vivo manipulation of cells [39] or in optofluidics [40,41].
The rotation effect of multilayer metamaterial makes it possible
to use them as micro-motors to construct hydrodynamic optical
tweezers for biological targeted therapy [42]. Significantly, ben-
efiting from the deep learning algorithm, compared with the
manual tuning, this work opens the door to a highly efficient
design of photonic force probes, spanning from the nanoscale
to the microscale. Together, optical trap enhancement with
deep learning algorithms makes multilayer metamaterial nano-
particles up-and-coming candidates for optomechanical sys-
tems in science and engineering.

APPENDIX A: FABRICATION PROCESS OF SSN
NANOPARTICLES

We use a top-down fabrication process to fabricate the SSN
nanoparticles, as shown in the Fig. 6. (1) A four-inch Si wafer
is cleaned. (2) A 100-nm-thick sacrificial chromium (Cr) layer
is deposited on the Si wafer by electron-beam evaporation.
(3) The SSN multilayer is deposited using plasma-assisted re-
active magnetron sputtering. (4) A positive-tone resist layer
with a thickness of 250 nm is spin-coated. (5) The resist layer
is patterned by electron-beam lithography. (6) The patterned
resist layer is developed with ultrasonication, sequentially
with the 50-nm-thick Cr etch mask layer deposited by

Table 1. Trapping Parameters of Two Kinds of Particles in Water

Types

Corner Frequency f c (Hz) Optical Trap Stiffness k (pNμm−1 mW−1)

f cx f cy f cz kx ky kz
SSN 1179 1304 850 0.75 0.83 0.54
TiO2 675 729 174 0.43 0.46 0.11

Fig. 6. The fabrication process of SSN nanoparticles. (The legend is the color coding for different materials.)
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Ar-plasma sputtering. (7) In the lift-off process, the top Cr layer
is initially removed by the adhesive tape and then the remaining
resist layer is removed by dipping the sample in resist stripper
solution. (8) A reactive ion etcher is used vertically to etch
the multilayer. (9) The samples are manually cleaved into
1 cm × 1 cm chips and then immersed in a petri dish contain-
ing Cr etchant solution (orange color, with 10%–20% ammo-
nium cerium nitrate and 5%–15% nitric acid) for 7 min, where
the top Cr mask and the bottom sacrificial Cr layer of the SSN
nanoparticles are dissolved altogether. (10) Then, take the sam-
ple with tweezers and gently place it flat in dry glassware and
dry treatment with a nitrogen atmosphere. (11) A small drop of
deionized (DI) water is dropped on the surface of the samples,
and most of the multilayer units on the surface are released in
this water droplet due to the surface tension of the water.
(12) Take the sample with plastic tweezers very slowly from
the glassware, where the water droplet is attached to the surface.
The taken-out sample and the water droplet on its surface are
transferred into a 1.5 mL centrifuge tube, followed by 30 s of
ultrasound processing. We remove the remaining Si substrate
and leave only the SSN nanoparticles in the DI water.

We determined the nanoparticle sizes by taking scanning
electron microscopy (SEM) and atomic force microscopy
(AFM) images after step (8). The top-view SEM images of
the samples are shown in Figs. 7(a) and 7(b). The side-view
SEM image of the samples is shown in Fig. 7(c). The SSN
nanoparticles are patterned in a square array with a gap length

of 20 μm, and the single unit cell has a width and length of
450 nm and 1125 nm, respectively. Figure 7(d) shows the
height of the unit cell as measured by AFM. The total height
of the unit cell is 600 nm, where the height of the Cr sacrificial
layer and the SSN nanoparticles is 150 nm and 450 nm,
respectively.

In addition, we set the time gradient during the wet etching
process to determine the exact dissolution time of the Cr sac-
rificial layer, as shown in Fig. 8. The sample is first placed in the
Cr etchant solution shown in step (9) for 47 s and then dried in
the nitrogen atmosphere shown in step (10). Moreover, we take
the SEM to observe the etching effect, as shown in Fig. 8(a).
We see that the etching is insufficient and repeat steps (9) and
(10) at a new time gradient. Figure 8(c) shows that the top Cr
mask is wholly etched at 120 s. Figure 8(d) shows that the bot-
tom sacrificial Cr layer is completely dissolved at 7 min, and the
substrate surface has traces of SSN nanoparticle stripping left.
Figure 8(e) shows that SSN nanoparticles can move freely on
the surface, indicating successful etching. The particles are sub-
sequently collected using the scheme shown in steps (11) and
(12). Figure 8(f ) is the schematic of step (11). The final con-
centration of the collected solution is about 2 × 104 particles
per μL.

We developed the homemade sample chamber to trap the
SSN nanoparticles. First, a standard slide is affixed with a
“doughnut” shaped 3M tape with a thickness of 100 μm. The
particle dispersion is then drawn with a syringe and dripped

Fig. 7. Characterization of SSN nanoparticles. (a) and (b) SEM images of the sample shown In step (8). (d) Height of the unit cell as measured
by AFM.
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inside the “doughnut” ring. Finally, a custom cover glass with a
thickness of 500 μm is covered, and the channel round is sealed
with vacuum grease to prevent the sample from drying out. The
chamber is filled with the SSN nanoparticle solution without
any air bubbles.

APPENDIX B: TRAPPING EFFICIENCY OF THE
AMORPHOUS TiO2 MICROSPHERE

We simulated the trapping efficiency as a function of the radius
of the high refractive index (1.75) amorphous TiO2 micro-
sphere, as shown in Fig. 9. The blue and red curves are the
axial (Qz) and lateral (Qx) trapping efficiency, respectively.
We can see that the Qz and Qx reach the maximum value

at about 600 nm radius, and both tend to be stable with
the increase of radius. Therefore, we chose the 600 nm radius
amorphous TiO2 microspheres as the comparison sample.

APPENDIX C: ANGULAR TRAPPING BEHAVIOR
OF SSN NANOPARTICLES

Figure 10 shows that the geometry and optical anisotropy of the
SSN nanoparticles simultaneously limit all three rotational de-
grees of freedom (RDOFs). To analyze the influence of shape
on torque, we compare the torques of cylindrical (blue curve)
and rectangular (red curve) SSN nanoparticles, respectively.
Figures 10(a) and 10(d) show the alignment torque τx [43],
attributed to the high AR. After the high AR nanoparticles tilt
at angles α (x direction) relative to the optical axis (z-axis), the
uneven surface stress distribution generates the torque τx ,
which ensures the nanoparticle’s long side is always parallel
to the z-axis. Figures 10(b) and 10(e) show that the alignment
torque τy is doubly confined by geometrical and optical
anisotropy. β is the angular displacement when the nanoparticle
is tilted to y direction relative to the optical axis. The geomet-
rically dependent torque exceeds the torque due to the birefrin-
gence, which can align the negative uniaxial nanoparticles and
ensure their optic axis (n⊥) is parallel to the electric field.
Therefore, the alignment torque always keeps the long side
of the nanoparticles parallel to the optical axis, no matter
how they fall into the trap.

Figures 10(c) and 10(f ) show the spin torque τz [44], which
is generated by the optical anisotropy on the x − y plane and the
rotation in the linear polarization of the trapping beam. γ is the
rotation angle. Remarkably, the τz of the rectangular and cylin-
drical SSN nanoparticles is similar. Because the optical axis (n⊥)

Fig. 8. To determine the exact dissolution time of the Cr sacrificial layer. (a) 47 s, (b) 80 s, (c) 120 s, (d) 180 s, (e) 7 min. (f ) A small drop of DI
water is dropped on the surface of the samples.

Fig. 9. The trapping efficiency as a function of the radius of the
amorphous TiO2 microsphere. The blue and red curves are the axial
(Qz ) and lateral (Qx) trapping efficiency, respectively.
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of the rectangular nanoparticles is perpendicular to its long side
during the spin, the cylindrical nanoparticles are perpendicular
to the tangential direction of the cylindrical side surface, essen-
tially the same as the rectangular one. Since the rectangular
SSN nanoparticles are easily fabricated by thin-film deposition
techniques, such as hot evaporation [45], ion beam sputtering
[46], and atomic layer deposition [47], we select rectangular
shapes for processing. The maximum spin torque τz of the rec-
tangular SSN nanoparticles at ρ � 0.2 is 189 pNnmmW−1.
Together with the rotational drag coefficient Γ, the maximum
spin speed f z � τz ∕�2πΓ� can be calculated. We build the
Navier–Stokes equations [48] in the computational fluid dy-
namics module of COMSOL to extract Γ. The surrounding
medium water is set to flow rotationally. The dynamic viscosity
of water is 0.933 mPa s at 25°C. Γ is 1.5 pN nm s. Thereby, f z
is 2005 Hz.

Figure 11 simulates the kz of trapped SSN nanoparticles at
different rotation angles γ. The total fluctuation values [34] for
ρ � 0.2 (red) and 0.3 (blue) are only 4% and 6.91%, respec-
tively, indicating that the influence of spin on kz can be
ignored.
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