• Photonics Research
  • Vol. 12, Issue 3, 423 (2024)
Shijie Sun, Qidong Yu, Yuanhua Che, Tianhang Lian, Yuhang Xie, Daming Zhang, and Xibin Wang*
Author Affiliations
  • State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
  • show less
    DOI: 10.1364/PRJ.509773 Cite this Article Set citation alerts
    Shijie Sun, Qidong Yu, Yuanhua Che, Tianhang Lian, Yuhang Xie, Daming Zhang, Xibin Wang. Mode-insensitive and mode-selective optical switch based on asymmetric Y-junctions and MMI couplers[J]. Photonics Research, 2024, 12(3): 423 Copy Citation Text show less
    References

    [1] D. Marpaung, J. Yao, J. Capmany. Integrated microwave photonics. Nat. Photonics, 13, 80-90(2019).

    [2] B. J. Eggleton, C. G. Poulton, P. T. Rakich. Brillouin integrated photonics. Nat. Photonics, 13, 664-677(2019).

    [3] H. Weigand, V. V. Vogler-Neuling, M. R. Escalé. Enhanced electro-optic modulation in resonant metasurfaces of lithium niobate. ACS Photon., 8, 3004-3009(2021).

    [4] I.-C. Benea-Chelmus, M. L. Meretska, D. L. Elder. Electro-optic spatial light modulator from an engineered organic layer. Nat. Commun., 12, 5928(2021).

    [5] P. Kharel, C. Reimer, K. Luke. Breaking voltage-bandwidth limits in integrated lithium niobate modulators using micro-structured electrodes. Optica, 8, 357-363(2021).

    [6] X. Wang, Z. Chen, M. Yin. Laser sharing uplink polarization division multiplexing FBMC passive optical network. J. Lightwave Technol., 41, 2323-2332(2023).

    [7] J. Li, L. Zhang, M. Zhang. Wearable conformal metasurfaces for polarization division multiplexing. Adv. Opt. Mater., 8, 2000068(2020).

    [8] Y. Li, Z. Hu, D. M. Benton. Demonstration of 10-channel mode- and polarization-division multiplexed free-space optical transmission with successive interference cancellation DSP. Opt. Lett., 47, 2742-2745(2022).

    [9] H. Matsunaga, T. Yendo, S. Arai. Exposure synchronization in optical camera communications for time division multiplexing. IEEE Photon. J., 15, 7301315(2023).

    [10] S. Li, Z. Qin, Z. Liu. Long-distance OFDR with high spatial resolution based on time division multiplexing. J. Lightwave Technol., 41, 5763-5772(2023).

    [11] F. Liu, M. Zhang, D. Yi. Analysis and improvement of dynamic range in a time-division-multiplexing interferometric fiber-optic sensor array. Opt. Lett., 48, 988-991(2023).

    [12] Z. Zheng, X. Zhou, K. Chen. LAN wavelength division multiplexer on silicon-lithium niobate hybrid integration platform. IEEE Photon. Technol. Lett., 35, 325-328(2023).

    [13] Y. Ruan, X. Qian, H. Wang. Applications for wavelength division multiplexers based on topological photonic crystals. Photon. Res., 11, 569-574(2023).

    [14] D. M. Maclure, J. J. D. McKendry, M. S. Islim. 10 Gbps wavelength division multiplexing using UV-A, UV-B, and UV-C micro-LEDs. Photon. Res., 10, 516-523(2022).

    [15] X. Han, L. Chen, Y. Jiang. Integrated subwavelength gratings on a lithium niobate on insulator platform for mode and polarization manipulation. Laser Photon. Rev., 16, 2200130(2022).

    [16] J. Oh, K. Li, J. Yang. Adjoint-optimized metasurfaces for compact mode-division multiplexing. ACS Photon., 9, 929-937(2022).

    [17] H. Wen, H. Liu, Y. Zhang. Mode demultiplexing hybrids for mode-division multiplexing coherent receivers. Photon. Res., 7, 917-925(2019).

    [18] Y. Liu, K. Xu, S. Wang. Arbitrarily routed mode-division multiplexed photonic circuits for dense integration. Nat. Commun., 10, 3263(2019).

    [19] W. Zhao, X. Yi, Y. Peng. Silicon multimode waveguide crossing based on anisotropic subwavelength gratings. Laser Photon. Rev., 16, 2100623(2022).

    [20] X. Guo, Z. Wang, Y. Zhang. Ultra-broadband multimode waveguide crossing via subwavelength transmitarray with bound state. Laser Photon. Rev., 17, 2200674(2023).

    [21] W. Zhao, R. Liu, M. Zhu. High-performance mode-multiplexing device with anisotropic lithium-niobate-on-insulator waveguides. Laser Photon. Rev., 17, 2200774(2023).

    [22] K. Li, X. Cao, Y. Wan. Fundamental analyses of fabrication-tolerant high-performance silicon mode (de)multiplexer. Opt. Express, 30, 22649-22660(2022).

    [23] F. Liu, W. Zhang, P. Wu. Fault detection sensitivity enhancement based on high-order spatial mode trend filtering for few-mode fiber link. Opt. Express, 29, 5226-5235(2021).

    [24] M. Ma, M. Yuan, X. Zhou. Multimode waveguide bends in lithium niobate on insulator. Laser Photon. Rev., 17, 2200862(2023).

    [25] B. Lin, S. Sun, Y. Che. Few-mode 3-dB power splitters based on polymer waveguide directional couplers. Opt. Laser Technol., 157, 108667(2023).

    [26] Y. Xiong, R. B. Priti, O. Liboiron-Ladouceur. High-speed two-mode switch for mode-division multiplexing optical networks. Optica, 4, 1098-1102(2017).

    [27] R. B. Priti, O. Liboiron-Ladouceur. Reconfigurable and scalable multimode silicon photonics switch for energy-efficient mode-division-multiplexing systems. J. Lightwave Technol., 37, 3851-3860(2019).

    [28] M. Zhang, K. Chen, W. Jin. Electro-optic mode-selective switch based on cascaded three-dimensional lithium-niobate waveguide directional couplers. Opt. Express, 28, 35506-35517(2020).

    [29] T.-D. Kim, J. Luo, J.-W. Ka. Ultralarge and thermally stable electro-optic activities from Diels–Alder crosslinkable polymers containing binary chromophore systems. Adv. Mater., 18, 3038-3042(2006).

    [30] G.-W. Lu, J. Hong, F. Qiu. High-temperature-resistant silicon-polymer hybrid modulator operating at up to 200 Gbit s−1 for energy-efficient datacentres and harsh-environment applications. Nat. Commun., 11, 4224(2020).

    [31] Q. Huang, W. Jin, K. S. Chiang. Broadband mode switch based on a three-dimensional waveguide Mach–Zehnder interferometer. Opt. Lett., 42, 4877-4880(2017).

    [32] Y. Enami, C. T. Derose, D. Mathine. Hybrid polymer/sol–gel waveguide modulators with exceptionally large electro-optic coefficients. Nat. Photonics, 1, 180-185(2007).

    [33] B. Lin, T. Lian, S. Sun. Ultra-broadband and compact TM-pass polarizer based on graphene-buried polymer waveguide. Polymers, 14, 1481(2022).

    [34] L. Jiang, Q. Huang, K. S. Chiang. Low-power all-optical switch based on a graphene-buried polymer waveguide Mach-Zehnder interferometer. Opt. Express, 30, 6786-6797(2022).

    [35] J. Mao, H. Sato, A. Bannaron. Efficient silicon and side-cladding waveguide modulator with electro-optic polymer. Opt. Express, 30, 1885(2022).

    [36] F. Shi, N. Bamiedakis, P. P. Vasil’ev. Flexible multimode polymer waveguide arrays for versatile high-speed short-reach communication links. J. Lightwave Technol., 36, 2685-2693(2018).

    [37] X. Wang, K. S. Chiang. Polarization-insensitive mode-insensitive thermo-optic switch based on symmetric waveguide directional coupler. Opt. Express, 27, 35385-35393(2019).

    [38] L. Jiang, K. S. Chiang. All-optical mode switching with a graphene-buried polymer waveguide directional coupler. Opt. Lett., 47, 2414-2417(2022).

    [39] S. Sun, Y. Che, Q. Yu. Mode-independent thermo-optic switch based on the total-internal-reflection effect. Opt. Lett., 48, 3825-3828(2023).

    [40] T. Lian, M. Zhu, S. Sun. Mode-selective modulator and switch based on graphene-polymer hybrid waveguides. Opt. Express, 30, 23746-23755(2022).

    [41] Q. Huang, K. S. Chiang, W. Jin. Thermo-optically controlled vertical waveguide directional couplers for mode-selective switching. IEEE Photon. J., 10, 6602714(2018).

    [42] S. Sun, X. Sun, T. Lian. 1 × 2 mode-insensitive polymeric thermo-optic switch based on a Mach-Zehnder interferometer with a multimode interferometer. Opt. Express, 31, 12049-12058(2023).

    [43] T. Zhou, H. Jia, J. Ding. On-chip broadband silicon thermo-optic 2 × 2 four-mode optical switch for optical space and local mode switching. Opt. Express, 26, 8375-8384(2018).

    [44] C. D. Truong, D. N. T. Hang, H. Chandrahalim. On-chip silicon photonic controllable 2 × 2 four-mode waveguide switch. Sci. Rep., 11, 897(2021).

    [45] Á. Rosa, A. Gutiérrez, A. Brimont. High performance silicon 2 × 2 optical switch based on a thermo-optically tunable multimode interference coupler and efficient electrodes. Opt. Express, 24, 191-198(2016).

    [46] Y. Zhang, M. A. Al-Mumin, H. Liu. An integrated few-mode power splitter based on multimode interference. J. Lightwave Technol., 37, 3000-3008(2019).

    [47] J. Leuthold, J. Eckner, E. Gamper. Multimode interference couplers for the conversion and combining of zero- and first-order modes. J. Lightwave Technol., 16, 1228-1239(1998).

    [48] W. W. Chen, P. J. Wang, T. J. Yang. Silicon three-mode (de)multiplexer based on cascaded asymmetric Y junctions. Opt. Lett., 41, 2851-2854(2016).

    [49] J. D. Love, N. Riesen. Single-, few-, and multimode Y-junctions. J. Lightwave Technol., 30, 304-309(2012).

    [50] X. Zi, L. Wang, K. Chen. Mode-selective switch based on thermo-optic asymmetric directional coupler. IEEE Photon. Technol. Lett., 30, 618-621(2018).

    [51] J. Yue, C. Wang, H. Lin. Interlayer directional coupling thermo-optic waveguide switches based on functionalized epoxy-crosslinking polymers. Opt. Express, 30, 13931-13941(2022).

    [52] H. Baghsiahi, K. Wang, W. Kandulski. Optical waveguide end facet roughness and optical coupling loss. J. Lightwave Technol., 31, 2659-2968(2013).

    [53] Y. Liu, X. Wang, J. Sun. Improved performance of thermal-optic switch using polymer/silica hybrid and air trench waveguide structures. Opt. Lett., 40, 1888-1891(2015).

    Shijie Sun, Qidong Yu, Yuanhua Che, Tianhang Lian, Yuhang Xie, Daming Zhang, Xibin Wang. Mode-insensitive and mode-selective optical switch based on asymmetric Y-junctions and MMI couplers[J]. Photonics Research, 2024, 12(3): 423
    Download Citation