• Photonics Research
  • Vol. 9, Issue 9, 1803 (2021)
Hongwei Gao1, George F. R. Chen1, Peng Xing1, Ju Won Choi1, and Dawn T. H. Tan1、2、*
Author Affiliations
  • 1Photonics Devices and Systems Group, Singapore University of Technology and Design, Singapore 487372, Singapore
  • 2Institute of Microelectronics, A*STAR, Singapore 138634, Singapore
  • show less
    DOI: 10.1364/PRJ.430801 Cite this Article Set citation alerts
    Hongwei Gao, George F. R. Chen, Peng Xing, Ju Won Choi, Dawn T. H. Tan. 3D printed on-chip microtoroid resonators and nested spiral photonic devices[J]. Photonics Research, 2021, 9(9): 1803 Copy Citation Text show less
    References

    [1] Y. P. Gao, C. Cao, T. J. Wang, Y. Zhang, C. Wang. Cavity-mediated coupling of phonons and magnons. Phys. Rev. A, 96, 023826(2017).

    [2] X. F. Liu, T. J. Wang, Y. P. Gao, C. Cao, C. Wang. Chiral microresonator assisted by Rydberg-atom ensembles. Phys. Rev. A, 98, 033824(2018).

    [3] Z. Shen, Y. L. Zhang, Y. Chen, C. L. Zou, Y. F. Xiao, X. B. Zou, F. W. Sun, G. C. Guo, C. H. Dong. Experimental realization of optomechanically induced nonreciprocity. Nat. Photonics, 10, 657-661(2016).

    [4] L. Tian. Optoelectromechanical transducer: reversible conversion between microwave and optical photons. Ann. Phys., 527, 1-14(2015).

    [5] R. Osellame. New effective technique to produce waveguides in lithium niobate on insulator (LNOI). Quantum Eng., 1, e11(2019).

    [6] M. Wang, R. Wu, J. Lin, J. Zhang, Z. Fang, Z. Chai, Y. Cheng. Chemo-mechanical polish lithography: a pathway to low loss large-scale photonic integration on lithium niobate on insulator. Quantum Eng., 1, e9(2019).

    [7] F. Bo, J. Wang, J. Cui, S. K. Ozdemir, Y. Kong, G. Zhang, J. Xu, L. Yang. Lithium niobate–silica hybrid whispering-gallery-mode resonators. Adv. Mater., 27, 8075-8081(2015).

    [8] Q. T. Cao, H. Wang, C. H. Dong, H. Jing, R. S. Liu, X. Chen, L. Ge, Q. Gong, Y.-F. Xiao. Experimental demonstration of spontaneous chirality in a nonlinear microresonator. Phys. Rev. Lett., 118, 033901(2017).

    [9] X. Yang, Ş. K. Özdemir, B. Peng, H. Yilmaz, F. C. Lei, G. L. Long, L. Yang. Raman gain induced mode evolution and on-demand coupling control in whispering gallery-mode microcavities. Opt. Express, 23, 29573-29583(2015).

    [10] S. H. Huang, S. Sheth, E. Jain, X. Jiang, S. P. Zustiak, L. Yang. Whispering gallery mode resonator sensor for in situ measurements of hydrogel gelation. Opt. Express, 26, 51-62(2018).

    [11] F. Vollmer, S. Arnold. Whispering-gallery-mode biosensing: label-free detection down to single molecules. Nat. Methods, 5, 591-596(2008).

    [12] S. Yu. Manipulating optical vortices using photonic integration. AAPPS Bull., 25, 19-24(2015).

    [13] H. Fan, X. Gu, D. Zhou, H. Fan, L. Fan, C. Xia. Confined whispering-gallery mode in silica double-toroid microcavities for optical sensing and trapping. Opt. Commun., 434, 97-103(2019).

    [14] Y. Wang, S. Li, S. Kiravittaya, X. Wu, K. Wu, X. Li, Y. Mei. Mode-splitting based optofluidic sensing at exceptional points in tubular microcavities. Opt. Commun., 446, 128-133(2019).

    [15] G. Q. Qin, H. Yang, X. Mao, J. W. Wen, M. Wang, D. Ruan, G. L. Long. Manipulation of optomechanically induced transparency and absorption by indirectly coupling to an auxiliary cavity mode. Opt. Express, 28, 580-592(2020).

    [16] M. Wang, Y. Z. Wang, X. S. Xu, Y. Q. Hu, G. L. Long. Characterization of microresonator-geometry-deformation for cavity optomechanics. Opt. Express, 27, 63-73(2019).

    [17] T. Wang, Y. Q. Hu, C. G. Du, G. L. Long. Multiple EIT and EIA in optical microresonators. Opt. Express, 27, 7344-7353(2019).

    [18] F. C. Lei, M. Gao, C. Du, Q. L. Jing, G. L. Long. Three-pathway electromagnetically induced transparency in coupled-cavity optomechanical system. Opt. Express, 23, 11508-11517(2015).

    [19] D. E. Liu. Sensing Kondo correlations in a suspended carbon nanotube mechanical resonator with spin-orbit coupling. Quantum Eng., 1, e10(2019).

    [20] J. Richter, M. P. Nezhad, J. Witzens. High-Q inverted silica microtoroid resonators monolithically integrated into a silicon photonics platform. Opt. Express, 26, 27418-27440(2018).

    [21] H. Gao, G. F. R. Chen, P. Xing, J. W. Choi, H. Y. Low, D. T. H. Tan. High-resolution 3D printed photonic waveguide devices. Adv. Opt. Mater., 8, 2000613(2020).

    [22] A. Nesic, M. Blaicher, T. Hoose, A. Hofmann, M. Lauermann, Y. Kutuvantavida, M. Nöllenburg, S. Randel, W. Freude, C. Koos. Photonic-integrated circuits with non-planar topologies realized by 3D-printed waveguide overpasses. Opt. Express, 27, 17402-17425(2019).

    [23] N. Lindenmann, G. Balthasar, D. Hillerkuss, R. Schmogrow, M. Jordan, J. Leuthold, W. Freude, C. Koos. Photonic wire bonding: a novel concept for chip-scale interconnects. Opt. Express, 20, 17667-17677(2012).

    [24] D. Richardson, J. Fini, L. Nelson. Space-division multiplexing in optical fibres. Nat. Photonics, 7, 354-362(2013).

    [25] . 100G PSM4 specification(2020).

    [26] https://100glambda.com/. https://100glambda.com/

    [27] L. Ding, W.-D. Zhong, C. Lu, Y. Wang. New bit-error-rate monitoring technique based on histograms and curve fitting. Opt. Express, 12, 2507-2511(2004).

    Hongwei Gao, George F. R. Chen, Peng Xing, Ju Won Choi, Dawn T. H. Tan. 3D printed on-chip microtoroid resonators and nested spiral photonic devices[J]. Photonics Research, 2021, 9(9): 1803
    Download Citation