• Laser & Optoelectronics Progress
  • Vol. 61, Issue 23, 2314011 (2024)
Liqun Kuai*, Gan Lu, Jinzhong Lu, and Kaiyu Luo
Author Affiliations
  • School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu , China
  • show less
    DOI: 10.3788/LOP241053 Cite this Article Set citation alerts
    Liqun Kuai, Gan Lu, Jinzhong Lu, Kaiyu Luo. Mechanism of Isotropic Enhancement of Selective Laser Melted 316L Stainless Steel Under Different Build Directions by Annealing Heat Treatment[J]. Laser & Optoelectronics Progress, 2024, 61(23): 2314011 Copy Citation Text show less
    Test results. (a) Powder SEM image; (b) size distribution statistics of powder particle; (c) SLM scanning strategy; (d) SLM process flow; (e) diagram of specimens with different build directions; (f) size of tensile specimens
    Fig. 1. Test results. (a) Powder SEM image; (b) size distribution statistics of powder particle; (c) SLM scanning strategy; (d) SLM process flow; (e) diagram of specimens with different build directions; (f) size of tensile specimens
    Microhardness values of all specimens. (a) 750 ℃; (b) 850 ℃; (c) 950 ℃
    Fig. 2. Microhardness values of all specimens. (a) 750 ℃; (b) 850 ℃; (c) 950 ℃
    Engineering stress-strain curve of all specimens. (a) 0°; (b) 45°; (c) 90°
    Fig. 3. Engineering stress-strain curve of all specimens. (a) 0°; (b) 45°; (c) 90°
    Elongation-ultimate tensile strength-yield strength of all specimens. (a) 0°; (b) 45°; (c) 90°
    Fig. 4. Elongation-ultimate tensile strength-yield strength of all specimens. (a) 0°; (b) 45°; (c) 90°
    Microscopic photograph of tensile fracture micrographs of AB specimens. (a) 0°; (b) 45°; (c) 90°
    Fig. 5. Microscopic photograph of tensile fracture micrographs of AB specimens. (a) 0°; (b) 45°; (c) 90°
    Microscopic photograph of tensile fracture micrographs of HT7 specimens. (a) 0°; (b) 45°; (c) 90°
    Fig. 6. Microscopic photograph of tensile fracture micrographs of HT7 specimens. (a) 0°; (b) 45°; (c) 90°
    Microscopic morphology images of AB specimens. (a) 0°; (b) 45°; (c) 90°
    Fig. 7. Microscopic morphology images of AB specimens. (a) 0°; (b) 45°; (c) 90°
    Microscopic morphology images of HT7 specimens. (a) 0°; (b) 45°; (c) 90°
    Fig. 8. Microscopic morphology images of HT7 specimens. (a) 0°; (b) 45°; (c) 90°
    EBSD pole and IPF maps of AB specimens. (a) 0°; (b) 45°; (c) 90°
    Fig. 9. EBSD pole and IPF maps of AB specimens. (a) 0°; (b) 45°; (c) 90°
    EBSD pole and IPF maps of HT7 specimens. (a) 0°; (b) 45°; (c) 90°
    Fig. 10. EBSD pole and IPF maps of HT7 specimens. (a) 0°; (b) 45°; (c) 90°
    Distribution of grain boundaries, phase maps, and distribution of grain size for AB specimens. (a) 0°; (b) 45°; (c) 90°
    Fig. 11. Distribution of grain boundaries, phase maps, and distribution of grain size for AB specimens. (a) 0°; (b) 45°; (c) 90°
    Distribution of grain boundaries, phase maps, and distribution of grain size for HT7 specimens. (a) 0°; (b) 45°; (c) 90°
    Fig. 12. Distribution of grain boundaries, phase maps, and distribution of grain size for HT7 specimens. (a) 0°; (b) 45°; (c) 90°
    Schematic of microstructure evolution mechanism of SLMed specimens in annealing heat treatment. (a) AB specimen; (b) HT7 specimen
    Fig. 13. Schematic of microstructure evolution mechanism of SLMed specimens in annealing heat treatment. (a) AB specimen; (b) HT7 specimen
    Dislocation density of AB specimens. (a) 0°; (b) 45°; (c) 90°
    Fig. 14. Dislocation density of AB specimens. (a) 0°; (b) 45°; (c) 90°
    Dislocation density of HT7 specimens. (a) 0°; (b) 45°; (c) 90°
    Fig. 15. Dislocation density of HT7 specimens. (a) 0°; (b) 45°; (c) 90°
    Grain orientation spread map of AB specimens. (a) 0°; (b) 45°; (c) 90°
    Fig. 16. Grain orientation spread map of AB specimens. (a) 0°; (b) 45°; (c) 90°
    Grain orientation spread map of HT7 specimens. (a) 0°; (b) 45°; (c) 90°
    Fig. 17. Grain orientation spread map of HT7 specimens. (a) 0°; (b) 45°; (c) 90°
    ElementFeCrNiMoMnSiC
    Mass fraction /%Bal.17.1310.682.551.030.520.01
    Table 1. Chemical composition of gas-atomized 316L powder
    Annealing heat treatmentHeating temperature /℃

    Insulation

    time /h

    Cooling method
    ABNoneNoneNone
    HT17500.5Air cooling
    HT27501.0
    HT37502.0
    HT48500.5
    HT58501.0
    HT68502.0
    HT79500.5
    HT89501.0
    HT99502.0
    Table 2. Heat treatment process of 316L stainless steel after SLM
    Liqun Kuai, Gan Lu, Jinzhong Lu, Kaiyu Luo. Mechanism of Isotropic Enhancement of Selective Laser Melted 316L Stainless Steel Under Different Build Directions by Annealing Heat Treatment[J]. Laser & Optoelectronics Progress, 2024, 61(23): 2314011
    Download Citation