• Acta Optica Sinica
  • Vol. 32, Issue 6, 619004 (2012)
Li Peipei*, Tang Haibo, and She Weilong
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/aos201232.0619004 Cite this Article Set citation alerts
    Li Peipei, Tang Haibo, She Weilong. Efficient Electro-Optical Controlled Difference-Frequency Conversion in Quasi-Periodic Optical Superlattice[J]. Acta Optica Sinica, 2012, 32(6): 619004 Copy Citation Text show less
    References

    [1] K. P. Petrov, L. Goldberg, F. K. Tittel et al.. Detection of CO in air by diode-pumped 4.6-μm difference-frequency generation in quasi-phase-matched LiNbO3 [J]. Opt. Lett., 1996, 21(1): 86~88

    [2] Wang Liusan, Cao Zhensong, Wang Huan et al.. A widely tunable mid-infrared difference frequency generation laser and Its detection of atmospheric water [J]. Acta Optica Sinica, 2011, 31(4): 0414003

    [3] Li Guang, Wang Li. Tuning properties and conversion efficiency in mid-infrared laser using ZnGeP2-difference frequency generation [J]. Chinese J. Lasers, 2010, 37(1): 54~58

    [4] J. A. Armstrong, N. Bloembergen, J. Ducuing et al.. Interactions between light waves in a nonlinear dielectric [J]. Phys. Rev., 1962, 127(6): 1918~1939

    [5] E. J. Lim, H. M. Hertz, M. L. Bortz et al.. Infrared radiation generated by quasi-phase-matched difference-frequency mixing in a periodically poled lithium niobate waveguide [J]. Appl. Phys. Lett., 1991, 59(18): 2207~2209

    [6] L. Goldberg, W. K. Burns, R. W. McElhanon. Difference-frequency generation of tunable mid-infrared radiation in bulk periodically poled LiNbO3 [J]. Opt. Lett., 1995, 20(11): 1280~1282

    [7] V. Pruneri, G. Bonfrate, P. G. Kazansky et al.. Greater than 20%-efficient frequency doubling of 1532-nm nanosecond pulses in quasi-phase-matched germanosilicate optical fibers [J]. Opt. Lett., 1999, 24(4): 208~210

    [8] N. Zhu, Y. Zhu, N. B. Ming. Quasi-phase-matched third-harmonic generation in a quasi-periodic optical surperlattice [J]. Science, 1997, 278(5339): 843~846

    [9] L. Lefort, K. Puech, S. D. Buterworth et al.. Effcient low-threshold synchronously-pumped parametric oscillation in periodically-poled lithium niobate over the 1.3~5.3 μm range [J]. Opt. Commun., 1998, 152(15): 55~58

    [10] C. L. Tang, P. P. Bey. Phase matching in second-harmonic generation using artificial periodic structures [J]. IEEE J. Quantum Electron., 1973, 9(1): 9~11

    [11] M. M. Fejer, G. Magel, D. Jundt et al.. Quasi-phase-matched second harmonic generation: tuning and tolerances [J]. IEEE J. Quantum Electron., 1992, 28(11): 2631~2564

    [12] Li Chun, An Yuying, Zeng Xiaodong. LiNbO3 electrooptic tuning optical parametric oscillator [J]. Acta Optica Sinica, 2004, 24(2): 172~174

    [13] F. Xu, J. Liao, X. Zhang et al.. Complete conversion of sum-frequency generation enhanced by controllable linear gratings induced by an electro-optic effect in a periodic optical superlattice [J]. Phys. Rev. A, 2003, 68(3): 033808

    [14] N. O. Brien, M. Missey, P. Powers et al.. Electro-optic spectral tuning in a continuous-wave, asymmetric-duty-cycle, periodically poled LiNbO3 optical parametric oscillator [J]. Opt. Lett., 1999, 24(23): 1750~1752

    [15] K. W. Chang, A. Chiang, T. Lin et al.. Simultaneous wavelength conversion and amplitude modulation in a monolithic periodically-poled lithium niobate [J]. Opt. Commun., 2002, 203(1-2): 163~168

    [16] C. P. Huang, Q. Wang, Y. Zhu. Cascaded frequency doubling and electro-optic coupling in a single optical superlattice [J]. Appl. Phys. B, 2005, 80(6): 741~744

    [17] W. She, W. Lee. Wave coupling theory of linear electro-optic effect [J]. Opt. Commun., 2001, 195(1-4): 303~311

    [18] G. Zheng, H. Wang, W. She. Wave coupling theory of quasi-phase-matched linear electro-optic effect [J]. Opt. Express, 2006, 14(12): 5535~5541

    [19] D. Huang, W. She. High-flux photon-pair source from electrically induced parametric down conversion after second-harmonic generation in single optical superlattice [J]. Opt. Express, 2007, 15(13): 8275~8283

    [20] G. J. Edwards, M. Lawrence. A temperature-dependent dispersion equation for congruently grown lithium niobate [J]. Opt. & Quantum Electron., 1984, 16(4): 373~375

    [21] K. Fradkin-Kashi, A. Arie. Multiple-wavelength quasi-phase-matched nonlinear interactions [J]. IEEE J. Quantum Electron., 1999, 35(11): 1649~1656

    [22] C. Zhang, H. Wei, Y. Y. Zhu et al.. Third-harmonic generation in a general two-component quasi-periodic optical superlattice [J]. Opt. Lett., 2001, 26(12): 899~901

    [23] H. Tang, L. Chen, W. She. Electrically controlled second harmonic generation of circular polarization in a single LiNbO3 optical superlattice [J]. Appl. Phys. B, 2009, 94(1): 661~666

    [24] Y. Lee, F. Fan, Y. Huang et al.. Nonlinear multiwave length conversion based on an aperiodic optical superlattice in lithium niobate [J]. Opt. Lett., 2002, 27(24): 2191~2193

    [25] F. Ji, B. Zhang, E. Li et al.. Theoretical study of the electro-optic effect of aperiodically poled lithium niobate in a Q-switched dual-wavelength laser [J]. Opt. Commun., 2006, 262(2): 234~237

    CLP Journals

    [1] Jiang Haowei, Li Guangzhen, Liu Yian, Chen Yuping, Chen Xianfeng. Recent Advances in Cascading Electro-Optic Photonic Crystal[J]. Laser & Optoelectronics Progress, 2017, 54(6): 60001

    Li Peipei, Tang Haibo, She Weilong. Efficient Electro-Optical Controlled Difference-Frequency Conversion in Quasi-Periodic Optical Superlattice[J]. Acta Optica Sinica, 2012, 32(6): 619004
    Download Citation