• Laser & Optoelectronics Progress
  • Vol. 58, Issue 22, 2207001 (2021)
Qingrong Wang, Lei Yang*, and Songsong Wang
Author Affiliations
  • College of Electrical and Information Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China
  • show less
    DOI: 10.3788/LOP202158.2207001 Cite this Article Set citation alerts
    Qingrong Wang, Lei Yang, Songsong Wang. Fault Diagnosis of Rolling Bearing Based on S-Transform and Convolutional Neural Network[J]. Laser & Optoelectronics Progress, 2021, 58(22): 2207001 Copy Citation Text show less
    Structure of the CNN
    Fig. 1. Structure of the CNN
    Flow chart of the model
    Fig. 2. Flow chart of the model
    CWRU rolling bearing data acquisition system[22]
    Fig. 3. CWRU rolling bearing data acquisition system[22]
    Ten kinds of simulation signal diagrams. (a) Normal signal; (b) OR 0.1778 nm; (c) OR 0.3556 mm; (d) OR 0.5334 mm; (e) B 0.1778 nm; (f) B 0.3556 mm; (g) B 0.5334 mm; (h) IR 0.1778 nm; (i) IR 0.3556 mm; (j) IR 0.5334 mm
    Fig. 4. Ten kinds of simulation signal diagrams. (a) Normal signal; (b) OR 0.1778 nm; (c) OR 0.3556 mm; (d) OR 0.5334 mm; (e) B 0.1778 nm; (f) B 0.3556 mm; (g) B 0.5334 mm; (h) IR 0.1778 nm; (i) IR 0.3556 mm; (j) IR 0.5334 mm
    Time frequency transformation results of 10 kinds of time domain signals. (a) Normal signal; (b) OR 0.1778 nm; (c) OR 0.3556 mm; (d) OR 0.5334 mm; (e) B 0.1778 nm; (f) B 0.3556 mm; (g) B 0.5334 mm; (h) IR 0.1778 nm; (i) IR 0.3556 mm; (j) IR 0.5334 mm
    Fig. 5. Time frequency transformation results of 10 kinds of time domain signals. (a) Normal signal; (b) OR 0.1778 nm; (c) OR 0.3556 mm; (d) OR 0.5334 mm; (e) B 0.1778 nm; (f) B 0.3556 mm; (g) B 0.5334 mm; (h) IR 0.1778 nm; (i) IR 0.3556 mm; (j) IR 0.5334 mm
    Graying results of 10 kinds frequency images. (a) Normal signal; (b) OR 0.1778 nm; (c) OR 0.3556 mm; (d) OR 0.5334 mm; (e) B 0.1778 nm; (f) B 0.3556 mm; (g) B 0.5334 mm; (h) IR 0.1778 nm; (i) IR 0.3556 mm; (j) IR 0.5334 mm
    Fig. 6. Graying results of 10 kinds frequency images. (a) Normal signal; (b) OR 0.1778 nm; (c) OR 0.3556 mm; (d) OR 0.5334 mm; (e) B 0.1778 nm; (f) B 0.3556 mm; (g) B 0.5334 mm; (h) IR 0.1778 nm; (i) IR 0.3556 mm; (j) IR 0.5334 mm
    Experimental results of two activation functions
    Fig. 7. Experimental results of two activation functions
    Experimental results of different networks
    Fig. 8. Experimental results of different networks
    Performance comparison of 4 types of networks
    Fig. 9. Performance comparison of 4 types of networks
    TypeBearing conditionFault diameter /mmData lengthNumber of samplesLoadSpeed /(r·min-1)
    1norm01024200021797
    2slight damage to inner ring0.17781024200021797
    3moderate damage of inner ring0.35561024200021797
    4severe damage of inner ring0.53341024200021797
    5slight damage of rolling element0.17781024200021797
    6moderate damage of rolling element0.35561024200021797
    7rolling weight injury0.53341024200021797
    8slight damage of outer ring0.17781024200021797
    9slight damage of outer ring0.35561024200021797
    10slight damage of outer ring0.53341024200021797
    Table 1. Experimental data
    Fault locationFault diameter /mmCode nameLabel
    None0a100000000
    Rolling element+inner ring0.1778b010000000
    Rolling element+outer ring0.3556c001000000
    Rolling element+outer ring0.5334d001000000
    Inner ring0.1778e000100000
    Inner ring0.3556f000010000
    Inner ring0.5334g000001000
    Outer ring0.1778i000000100
    Outer ring0.3556j000000010
    Outer ring0.5334k000000001
    Table 2. Fault code
    Learning rateAccuracy /%Training time /s
    169.64134
    0.134.42128
    0.0573.03132
    0.00599.87127
    0.00191.01144
    Table 3. Effects of different learning rates on network performance
    BatchsizeAccuracy /%Training time /s
    899.81226
    1699.62141
    3291.38237
    6488.76124
    12880.52138
    Table 4. Effects of different Batchsize on network performance
    Convolution kernel sizeAccuracy /%Training time /s
    3×398.784
    5×593.298
    8×892.479
    12×1291.877
    Table 5. Effects of different convolution kernel on network performance
    Network layer typeSpecific parameterNetwork layer output
    Inputinput of time-frequency diagram32×32
    C13×3 convolution kernels(32), in steps of 130×30×32
    S1maximum pool 2×2 cores, in steps of 115×15×32
    C23×3 convolution kernels(32), in steps of 213×13×32
    S2maximum pool 2×2 cores, in steps of 27×7×32
    FC1568 nodes1×1568
    Softmax10-classification1×10
    Table 6. Structural parameters of the CNN
    Qingrong Wang, Lei Yang, Songsong Wang. Fault Diagnosis of Rolling Bearing Based on S-Transform and Convolutional Neural Network[J]. Laser & Optoelectronics Progress, 2021, 58(22): 2207001
    Download Citation