• Journal of Infrared and Millimeter Waves
  • Vol. 21, Issue 5, 321 (2002)
[in Chinese]1, [in Chinese]1, [in Chinese]2, and [in Chinese]2
Author Affiliations
  • 1Physical Electronics and Photonics,Microtechnology Center aqt Chalmers,Department of Micrielectronics and Nanoscience Chalmers University,Fysikgrand 3,S-412 96 Gothenburg,Sweden
  • 2National Laboratory for Infrared Physics,Shanghai Institure of Technical Physics,Chinese Academy of Sciences,500 Yu-Tian Road ,Shanghai 200083,China
  • show less
    DOI: Cite this Article
    [in Chinese], [in Chinese], [in Chinese], [in Chinese]. QUANTUM MECHANICAL MODEL AND SIMULATION OFGaAs/AlGaAs QUANTUM WELL INFRARED PHOTO-DETECTOR-Ⅰ OPTICAL ASPECTS[J]. Journal of Infrared and Millimeter Waves, 2002, 21(5): 321 Copy Citation Text show less
    References

    [1] Casselman T N. State of infrared photodetectors and materials. Proceedings of the SPIE, 2999:2-10

    [2] Rogalski A. Comparison of the performance of quantum well and conventional bulk infrared photodetectors. Infrared Physics and Technology, 1997,38:295-310

    [3] Gunapala S D, Bandara S V, Liu J K, et al.Long-wavelength 640×486 GaAs/AlGaAs quantum well infrared photodetector Snap-Shot camera. IEEE Transactions on Electron Devices, 1998,45:1890-1895

    [4] Levine B F. Quantum-well infrared photodetectors. J.Appl.Phys, 1993,74:R1-81

    [6] Shen S C. Comparison and competition between MCT and QW structure material for use in IR detectors. Microelectronics Journal, 1994,25:713-739

    [8] Bratt P R, Casselman T N. Potential barriers in HgCdTe heterojunctions. J.Vac.Sci.Technol., 1985,A3:238-245

    [9] Kosai K J, et al. Status and application of HgCdTe device modeling (IR detectors). J.Electronic Materials,1995,24:635-640

    [10] Helms C R, Melendez J L, Robinson H G, et al. Process simulation for HgCdTe infrared forcal plane array flexible manufacturing. J.Electronic Materials, 1995,24:1137-1142

    [11] Choi K Ked. The Physics of Quantum Well Infrared Photodetectors. Singapore: World Scientific Publishing Co. Pte. Ltd. 1997

    [12] Fu Y, Willander M, Lu W, et al. Optical coupling in quantum well infrared photodetector by diffraction grating. J.Appl.Phys.1998,84:5750-5755

    [13] Fu Y, Willander M, Lu W, et al. Near-field coupling effect in normal incidence absorption of quantum well infrared photodetectors. J.Appl.Phys.1999,85:1237-1239

    [14] Fu Y, Li N, Karlsteen M, et al. Thermoexcited and photoexcited carrier transports in a GaAs/AlGaAs quantum well infrared photodetector. J.Appl.Phys.,2000,87:511-516

    [15] Sze S M. Physics of Semiconductor Devios. 2nd Edition, New York: John Wiley & Sons, 1981, 32

    [16] Kishino K, Arai S. Chapter 11 Integrated Lasers, Handbook of Semiconductor Lasers and Photonic Integrated Circuits.London:Chapman & Hall,1994,350

    [17] Stover J C. Optical Scattering: Measurement and Analysis.New York:McGram-Hill,1990,51

    [18] Cowley J. Diffraction Physics. Elsevier Amsterdam, 1995,11

    [19] Barenz J, Eska A, Hollricher O, et al. Near-field luminescence measurements on GaInAsP/InP double hetero- structures at room temperature. Appl.Optics, 1998,37:106-112

    [20] Andersson J Y, Lundqvist L. Near-unity quantum efficiency of AlGaAs/GaAs quantum well infrared detectors using a waveguide with a doubly periodic grating coupler.Appl.Phys.Lett., 1991,59:857-859; Andersson J Y, Lundqvist L. Grating-coupled quantum-well infrared detectors: theory and performance. J.Appl.Phys.,1992,71:3600-3610

    [in Chinese], [in Chinese], [in Chinese], [in Chinese]. QUANTUM MECHANICAL MODEL AND SIMULATION OFGaAs/AlGaAs QUANTUM WELL INFRARED PHOTO-DETECTOR-Ⅰ OPTICAL ASPECTS[J]. Journal of Infrared and Millimeter Waves, 2002, 21(5): 321
    Download Citation