• Laser & Optoelectronics Progress
  • Vol. 57, Issue 3, 031404 (2020)
Guohui Zhang*, Shaoqing Guo, Shuai Huang, Biao Zhou, Taiqi Yan, Bingqing Chen, and Xuejun Zhang
Author Affiliations
  • 3D Printing Research and Engineering Technology Center, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
  • show less
    DOI: 10.3788/LOP57.031404 Cite this Article Set citation alerts
    Guohui Zhang, Shaoqing Guo, Shuai Huang, Biao Zhou, Taiqi Yan, Bingqing Chen, Xuejun Zhang. Relative Density of GH4169 Superalloy Prepared by Selective Laser Melting[J]. Laser & Optoelectronics Progress, 2020, 57(3): 031404 Copy Citation Text show less
    GH4169 powder morphology
    Fig. 1. GH4169 powder morphology
    Test specimens of GH4169 alloy formed by SLM
    Fig. 2. Test specimens of GH4169 alloy formed by SLM
    Relative density of samples prepared by different process parameters
    Fig. 3. Relative density of samples prepared by different process parameters
    Metallographic microstructures of GH4169 samples prepared by different process parameters
    Fig. 4. Metallographic microstructures of GH4169 samples prepared by different process parameters
    Melt pool morphology of GH4169 samples prepared by different process parameters. (a) No. 1 parameter; (b) No. 2 parameter; (c) No. 3 parameter
    Fig. 5. Melt pool morphology of GH4169 samples prepared by different process parameters. (a) No. 1 parameter; (b) No. 2 parameter; (c) No. 3 parameter
    Microstructure morphology of GH4169 samples prepared by different process parameters. (a) No. 1 parameter; (b) No. 2 parameter; (c) No. 3 parameter
    Fig. 6. Microstructure morphology of GH4169 samples prepared by different process parameters. (a) No. 1 parameter; (b) No. 2 parameter; (c) No. 3 parameter
    ElementCCrNiCoMoAlTiNbFe
    Designed mass fraction /%0.02-0.0617-2150-55≤1.02.8-3.30.3-0.70.75-1.155.0-5.5Bal.
    Tested mass fraction /%0.03618.753.83<0.13.230.440.935.19Bal.
    Table 1. Designed composition and tested composition of GH4169 powder
    No.First authorModelPhysical significanceRef.
    1Morganφ1=4PπνsEnergy input of one unit area in one unit time[17]
    2Simchiφ2=PνdhEnergy input of one unit volume in one unit time[18]
    3Simchiφ3=PνshEnergy input of one unit volume in one unit time[19]
    4Yadroitsevφ4=PνEnergy input in one unit time[20]
    Table 2. Energy input density model proposed by other researchers
    Scanningspeed /(m·s-1)Energy input density /(W·s·m-1)
    200 W230 W260 W290 W320 W350 W
    0.6333.3333383.3333433.3333483.3333533.3333583.3333
    0.9222.2222255.5556288.8889322.2222355.5556388.8889
    1.2166.6667191.6667216.6667241.6667266.6667291.6667
    1.5133.3333153.3333173.3333193.3333213.3333233.3333
    1.8111.1111127.7778144.4444161.1111177.7778194.4444
    2.195.2381109.5238123.8095138.0952152.3810166.6667
    Table 3. Table of energy input density
    Scanning speed /(m·s-1)Relative density /%
    200 W230 W260 W290 W320 W350 W
    0.697.7096.7098.1098.2096.1097.50
    0.998.2096.8097.4098.3098.4097.30
    1.298.9097.8099.6098.4097.0098.30
    1.597.9098.5099.1099.7097.7098.40
    1.892.9096.2098.2099.5099.0097.90
    2.189.8092.7095.6096.8097.4098.20
    Table 4. Sample relative density prepared by various laser powers and scanning speeds
    Guohui Zhang, Shaoqing Guo, Shuai Huang, Biao Zhou, Taiqi Yan, Bingqing Chen, Xuejun Zhang. Relative Density of GH4169 Superalloy Prepared by Selective Laser Melting[J]. Laser & Optoelectronics Progress, 2020, 57(3): 031404
    Download Citation