• Journal of Inorganic Materials
  • Vol. 37, Issue 2, 173 (2021)
Wenbo LI1、2, Minsong HUANG2、3, Yueming LI1, and Chilin LI2、3、4
Author Affiliations
  • 11. School of Materials Science and Engineering, Jingdezhen Ceramic University, Jingdezhen 333403, China
  • 22. State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201899, China
  • 33. Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • 44. CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201899, China
  • show less
    DOI: 10.15541/jim20210353 Cite this Article
    Wenbo LI, Minsong HUANG, Yueming LI, Chilin LI. CoS2 as Cathode Material for Magnesium Batteries with Dual-salt Electrolytes [J]. Journal of Inorganic Materials, 2021, 37(2): 173 Copy Citation Text show less
    References

    [1] B LIU, G ZHANG J, W XU. Advancing lithium metal batteries. Joule, 2, 833-845(2018).

    [2] C LI, K CHEN, X ZHOU et al. Electrochemically driven conversion reaction in fluoride electrodes for energy storage devices. npj Computational Materials, 4, 22(2018).

    [3] D LIN, Y LIU, Y CUI. Reviving the lithium metal anode for high-energy batteries. Nature Nanotechnology, 12, 194-206(2017).

    [4] P ZHAI, L LIU, X GU et al. Interface engineering for lithium metal anodes in liquid electrolyte. Advanced Energy Materials, 10, 2001257(2020).

    [5] D YOO H, I SHTERENBERG, Y GOFER et al. Mg rechargeable batteries: an on-going challenge. Energy & Environmental Science, 6, 2265-2279(2013).

    [6] X ZHOU, J TIAN, J HU et al. High rate magnesium-sulfur battery with improved cyclability based on metal-organic framework derivative carbon host. Advanced Materials, 30, 1704166(2018).

    [7] J MULDOON, B BUCUR C, T GREGORY. Quest for nonaqueous multivalent secondary batteries: magnesium and beyond. Chemical Reviews, 114, 11683-11720(2014).

    [8] D AURBACH, H GIZBAR, A SCHECHTER et al. Electrolyte solutions for rechargeable magnesium batteries based on organomagnesium chloroaluminate complexes. Journal of The Electrochemical Society, 149, A115-A121(2002).

    [9] J EAVES-RATHERT, K MOYER, M ZOHAIR et al. Kinetic-versus diffusion-driven three-dimensional growth in magnesium metal batteries. Joule, 4, 1324-1336(2020).

    [10] Z LU, A SCHECHTER, M MOSHKOVICH et al. On the electrochemical behavior of magnesium electrodes in polar aprotic electrolyte solutions. Journal of Electroanalytical Chemistry, 466, 203-217(1999).

    [11] B SON S, T GAO, P HARVEY S et al. An artificial interphase enables reversible magnesium chemistry in carbonate electrolytes. Nature Chemistry, 10, 532-539(2018).

    [12] B BUCUR C, T GREGORY, G OLIVER A et al. Confession of a magnesium battery. The Journal of Physical Chemistry Letters, 6, 3578-3591(2015).

    [13] E LEVI, D LEVI M, O CHASID et al. A review on the problems of the solid state ions diffusion in cathodes for rechargeable Mg batteries. Journal of Electroceramics, 22, 13-19(2009).

    [14] S YAGI, T ICHITSUBO, Y SHIRAI et al. A concept of dual-salt polyvalent-metal storage battery. Journal of Materials Chemistry A, 2, 1144-1149(2014).

    [15] Y ZHANG, J XIE, Y HAN et al. Dual-salt Mg-based batteries with conversion cathodes. Advanced Functional Materials, 25, 7300-7308(2015).

    [16] N WU, Z YANG Z, R YAO H et al. Improving the electrochemical performance of the Li4Ti5O12 electrode in a rechargeable magnesium battery by lithium-magnesium co-intercalation. Angewandte Chemie International Edition, 127, 5849-5853(2015).

    [17] H CHO J, M AYKOL, S KIM et al. Controlling the intercalation chemistry to design high-performance dual-salt hybrid rechargeable batteries. Journal of the American Chemical Society, 136, 16116-16119(2014).

    [18] Z ZHANG, H XU, Z CUI et al. High energy density hybrid Mg2+/Li+ battery with superior ultra-low temperature performance. Journal of Materials Chemistry A, 4, 2277-2285(2016).

    [19] T GAO, F HAN, Y ZHU et al. Hybrid Mg2+/Li+ battery with long cycle life and high rate capability. Advanced Energy Materials, 5, 1401507(2015).

    [20] S SU, Y NULI, Z HUANG et al. A high-performance rechargeable Mg2+/Li+ hybrid battery using one-dimensional mesoporous TiO2(B) nanoflakes as the cathode. ACS Applied Materials & Interfaces, 8, 7111-7117(2016).

    [21] W PAN, X LIU, X MIAO et al. Molybdenum dioxide hollow microspheres for cathode material in rechargeable hybrid battery using magnesium anode. Journal of Solid State Electrochemistry, 19, 3347-3353(2015).

    [22] Y CHENG, J CHANG H, H DONG et al. Rechargeable Mg-Li hybrid batteries: status and challenges. Journal of Material Research, 31, 3125-3141(2016).

    [23] X CHEN, S WANG, H WANG. High performance hybrid Mg-Li ion batteries with conversion cathodes for low cost energy storage. Electrochica Acta, 265, 175-183(2018).

    [24] C WU, J HU, J TIAN et al. Stacking of tailored chalcogenide nanosheets around MoO2-C conductive stakes modulated by a hybrid POM⊂MOF precursor template: composite conversion- insertion cathodes for rechargeable Mg-Li dual-salt batteries. ACS Applied Materials & Interfaces, 11, 5966-5977(2019).

    [25] T GAO, M NOKED, J PEARSE A et al. Enhancing the reversibility of Mg/S battery chemistry through Li+ mediation. Journal of the American Chemical Society, 137, 12388-12383(2015).

    [26] H YUAN, Y YANG, Y NULI et al. A conductive selenized polyacrylonitrile cathode in nucleophilic Mg2+/Li+ hybrid electrolytes for magnesium-selenium batteries. Journal of Materials Chemistry A, 6, 17075-17085(2018).

    [27] Q WANG, R ZOU, W XIA et al. Facile synthesis of ultrasmall CoS2 nanoparticles within thin N-doped porous carbon shell for high performance lithium-ion batteries. Small, 11, 2511-2517(2015).

    [28] L LIU, I KANKAM, L ZHUANG H. Single-layer antiferromagnetic semiconductor CoS2 with pentagonal structure. Physical Review B, 98, 205425-205430(2018).

    [29] W LIU, E HU, H JIANG et al. A highly active and stable hydrogen evolution catalyst based on pyrite-structured cobalt phosphosulfide. Nature Communications, 7, 10771(2016).

    [30] J MULDOON, B BUCUR C, A OLIVER et al. Corrosion of magnesium electrolytes: chlorides-the culprit. Energy & Environmental Science, 6, 482-487(2013).

    [31] J TIAN, D CAO, X ZHOU et al. High-capacity Mg-organic batteries based on nanostructured rhodizonate salts activated by Mg-Li dual-salt electrolyte. ACS Nano, 12, 3424-3435(2018).

    [32] M TAO, G DU, T YANG et al. MXene-derived three-dimensional carbon nanotube network encapsulate CoS2 nanoparticles as an anode material for solid-state sodium-ion batteries. Journal of Materials Chemistry A, 8, 3018-3026(2020).

    [33] H JIN, J WANG, D SU et al. In situ cobalt-cobalt oxide/N-doped carbon hybrid as superior bifunctional electrocatalysts for hydrogen and oxygen evolution. Journal of the American Chemical Society, 137, 2688-2694(2015).

    [34] C GUO, W ZHANG, Y LIU et al. Constructing CoO/Co3S4 heterostructures embedded in N-doped carbon frameworks for high-performance sodium-ion batteries. Advanced Functional Materials, 29, 1901925(2019).

    [35] X ZU C, H LI. Thermodynamic analysis on energy densities of batteries. Energy & Environmental Science, 4, 2614-2624(2011).

    Wenbo LI, Minsong HUANG, Yueming LI, Chilin LI. CoS2 as Cathode Material for Magnesium Batteries with Dual-salt Electrolytes [J]. Journal of Inorganic Materials, 2021, 37(2): 173
    Download Citation