• Acta Optica Sinica
  • Vol. 44, Issue 4, 0424002 (2024)
Yingwen Su1, Hua Lu1、*, Shouhao Shi1, Dikun Li1, Xiangxian Wang2, and Jianlin Zhao1、**
Author Affiliations
  • 1Key Laboratory of Light Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Shaanxi Key Laboratory of Optical Information Technology, Xi'an 710129, Shaanxi, China
  • 2School of Science, Lanzhou University of Technology, Lanzhou 730050, Gansu, China
  • show less
    DOI: 10.3788/AOS231589 Cite this Article Set citation alerts
    Yingwen Su, Hua Lu, Shouhao Shi, Dikun Li, Xiangxian Wang, Jianlin Zhao. Strong Coupling Between Surface Plasmons in Metallic Grating and Excitons in Tungsten Disulfide[J]. Acta Optica Sinica, 2024, 44(4): 0424002 Copy Citation Text show less
    References

    [1] Novoselov K S, Geim A K, Morozov S V et al. Electric field effect in atomically thin carbon films[J]. Science, 306, 666-669(2004).

    [2] Zhang Y B, Tan Y W, Stormer H L et al. Experimental observation of the quantum Hall effect and Berry’s phase in graphene[J]. Nature, 438, 201-204(2005).

    [3] Neto A H C, Guinea F, Peres N M R et al. The electronic properties of graphene[J]. Reviews of Modern Physics, 81, 109-162(2009).

    [4] Huang X, Zeng Z Y, Zhang H. Metal dichalcogenide nanosheets: preparation, properties and applications[J]. Chemical Society Reviews, 42, 1934-1946(2013).

    [5] Chhowalla M, Liu Z F, Zhang H. Two-dimensional transition metal dichalcogenide (TMD) nanosheets[J]. Chemical Society Reviews, 44, 2584-2586(2015).

    [6] Lu H, Yue Z J, Li Y W et al. Magnetic plasmon resonances in nanostructured topological insulators for strongly enhanced light–MoS2 interactions[J]. Light: Science & Applications, 9, 191(2020).

    [7] Guo J S, Li J, Liu C Y et al. High-performance silicon-graphene hybrid plasmonic waveguide photodetectors beyond 1.55 μm[J]. Light: Science & Applications, 9, 29(2020).

    [8] Li D K, Lu H, Li Y W et al. Plasmon-enhanced photoluminescence from MoS2 monolayer with topological insulator nanoparticle[J]. Nanophotonics, 11, 995-1001(2022).

    [9] Hou L P, Wang Q F, Zhang H M et al. Simultaneous control of plasmon-exciton and plasmon-trion couplings in an Au nanosphere and monolayer WS2 hybrid system[J]. APL Photonics, 7, 026107(2022).

    [10] Tan H, Du L, Yang F H et al. Two-dimensional materials in photonic integrated circuits: recent developments and future perspectives[J]. Chinese Optics Letters, 21, 110007(2023).

    [11] Wang Q H, Kalantar-Zadeh K, Kis A et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides[J]. Nature Nanotechnology, 7, 699-712(2012).

    [12] Xia F N, Wang H, Xiao D et al. Two-dimensional material nanophotonics[J]. Nature Photonics, 8, 899-907(2014).

    [13] Ke Y X, Cen Y Q, Qi D Y et al. Two-dimensional materials photodetectors for optical communications[J]. Chinese Journal of Lasers, 50, 0113008(2023).

    [14] Li Z W, Lu H, Li Y W et al. Near-infrared light absorption enhancement in graphene induced by the Tamm state in optical thin films[J]. Acta Optica Sinica, 39, 0131001(2019).

    [15] Zhang P R, Liu H, Hu J X et al. Synthesis of monolayer MoS2(1-x)Se2x alloy and photoelectric properties of MoS2(1-x)Se2x(x=0.25) field-effect transistor[J]. Acta Optica Sinica, 42, 1616001(2022).

    [16] Li J L, Sun K X. Light absorption characteristics of a graphene photodetector based on nano-metal modification[J]. Laser & Optoelectronics Progress, 59, 2124003(2022).

    [17] Liu X Y, Wu S X, Cao X X et al. Plasmon resonance-enhanced graphene nanofilm-based dual-band infrared silicon photodetector[J]. Photonics Research, 11, 1657(2023).

    [18] Zhang H. Ultrathin two-dimensional nanomaterials[J]. ACS Nano, 9, 9451-9469(2015).

    [19] Wang F, Wang Z X, Shifa T A et al. Two-dimensional non-layered materials: synthesis, properties and applications[J]. Advanced Functional Materials, 27, 1603254(2017).

    [20] Manzeli S, Ovchinnikov D, Pasquier D et al. 2D transition metal dichalcogenides[J]. Nature Reviews Materials, 2, 17033(2017).

    [21] Ramasubramaniam A. Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides[J]. Physical Review B, 86, 115409(2012).

    [22] Ghosh S, Su R, Zhao J X et al. Microcavity exciton polaritons at room temperature[J]. Photonics Insights, 1, R04(2022).

    [23] Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics[J]. Nature, 424, 824-830(2003).

    [24] Gramotnev D K, Bozhevolnyi S I. Plasmonics beyond the diffraction limit[J]. Nature Photonics, 4, 83-91(2010).

    [25] Kasprzak J, Richard M, Kundermann S et al. Bose–Einstein condensation of exciton polaritons[J]. Nature, 443, 409-414(2006).

    [26] Lerario G, Fieramosca A, Barachati F et al. Room-temperature superfluidity in a polariton condensate[J]. Nature Physics, 13, 837-841(2017).

    [27] Sillanpää M A, Park J I, Simmonds R W. Coherent quantum state storage and transfer between two phase qubits via a resonant cavity[J]. Nature, 449, 438-442(2007).

    [28] Zasedatelev A V, Baranikov A V, Sannikov D et al. Single-photon nonlinearity at room temperature[J]. Nature, 597, 493-497(2021).

    [29] Wang S J, Li S L, Chervy T et al. Coherent coupling of WS2 monolayers with metallic photonic nanostructures at room temperature[J]. Nano Letters, 16, 4368-4374(2016).

    [30] Li B W, Zu S, Zhang Z P et al. Large Rabi splitting obtained in Ag-WS2 strong-coupling heterostructure with optical microcavity at room temperature[J]. Opto-Electronic Advances, 2, 190008(2019).

    [31] Sang Y G, Wang C Y, Raja S S et al. Tuning of two-dimensional plasmon-exciton coupling in full parameter space: a polaritonic non-Hermitian system[J]. Nano Letters, 21, 2596-2602(2021).

    [32] Zheng D, Zhang S P, Deng Q et al. Manipulating coherent plasmon-exciton interaction in a single silver nanorod on monolayer WSe2[J]. Nano Letters, 17, 3809-3814(2017).

    [33] Han X B, Wang K, Xing X Y et al. Rabi splitting in a plasmonic nanocavity coupled to a WS2 monolayer at room temperature[J]. ACS Photonics, 5, 3970-3976(2018).

    [34] Geisler M, Cui X M, Wang J F et al. Single-crystalline gold nanodisks on WS2 mono- and multilayers for strong coupling at room temperature[J]. ACS Photonics, 6, 994-1001(2019).

    [35] Yang L L, Xie X, Yang J N et al. Strong light-matter interactions between gap plasmons and two-dimensional excitons under ambient conditions in a deterministic way[J]. Nano Letters, 22, 2177-2186(2022).

    [36] Liu L, Tobing L Y M, Yu X C et al. Strong plasmon–exciton interactions on nanoantenna array–monolayer WS2 hybrid system[J]. Advanced Optical Materials, 8, 1901002(2020).

    [37] Sun J W, Li Y, Hu H T et al. Strong plasmon-exciton coupling in transition metal dichalcogenides and plasmonic nanostructures[J]. Nanoscale, 13, 4408-4419(2021).

    [38] Wen J X, Wang H, Wang W L et al. Room-temperature strong light-matter interaction with active control in single plasmonic nanorod coupled with two-dimensional atomic crystals[J]. Nano Letters, 17, 4689-4697(2017).

    [39] Cuadra J, Baranov D G, Wersäll M et al. Observation of tunable charged exciton polaritons in hybrid monolayer WS2-plasmonic nanoantenna system[J]. Nano Letters, 18, 1777-1785(2018).

    [40] Palik E D, Lowrie W[M]. Handbook of optical constants of solids(1998).

    [41] Weber M J[M]. Handbook of optical materials(2003).

    [42] Xie H, Kong F M, Li K. The electric field enhancement and resonance in optical antenna composed of AU nanoparicles[J]. Journal of Electromagnetic Waves and Applications, 23, 534-547(2009).

    [43] Ansari N, Ghorbani F. Light absorption optimization in two-dimensional transition metal dichalcogenide van der Waals heterostructures[J]. Journal of the Optical Society of America B Optical Physics, 35, 1179-1185(2018).

    [44] Fan S H, Suh W, Joannopoulos J D. Temporal coupled-mode theory for the Fano resonance in optical resonators[J]. Journal of the Optical Society of America A, 20, 569-572(2003).

    [45] Lu H, Liu X M. Optical bistability in subwavelength compound metallic grating[J]. Optics Express, 21, 13794-13799(2013).

    [46] Taflove A, Hagness S C[M]. Computational electrodynamics: the finite-difference time-domain method(2005).

    [47] Lu H, Shi S H, Li D K et al. Strong self-enhancement of optical nonlinearity in a topological insulator with generation of Tamm state[J]. Laser & Photonics Reviews, 17, 2300269(2023).

    [48] Yeshchenko O A, Bondarchuk I S, Gurin V S et al. Temperature dependence of the surface plasmon resonance in gold nanoparticles[J]. Surface Science, 608, 275-281(2013).

    [49] Xu M, Yang J Y, Zhang S Y et al. Role of electron-phonon coupling in finite-temperature dielectric functions of Au, Ag, and Cu[J]. Physical Review B, 96, 115154(2017).

    [50] Jauffred L, Samadi A, Klingberg H et al. Plasmonic heating of nanostructures[J]. Chemical Reviews, 119, 8087-8130(2019).

    [51] Hutter E, Fendler J H. Exploitation of localized surface plasmon resonance[J]. Advanced Materials, 16, 1685-1706(2004).

    [52] Wei H, Yan X H, Niu Y J et al. Plasmon-exciton interactions: spontaneous emission and strong coupling[J]. Advanced Functional Materials, 31, 2100889(2021).

    [53] Chen W J, Li M, Zhang W H et al. Dual-resonance sensing for environmental refractive index based on quasi-BIC states in all-dielectric metasurface[J]. Nanophotonics, 12, 1147-1157(2023).

    Yingwen Su, Hua Lu, Shouhao Shi, Dikun Li, Xiangxian Wang, Jianlin Zhao. Strong Coupling Between Surface Plasmons in Metallic Grating and Excitons in Tungsten Disulfide[J]. Acta Optica Sinica, 2024, 44(4): 0424002
    Download Citation