[1] He Y Z, Sheng B, Yin H et al. Distributed satellite cluster laser networking algorithm with double-layer Markov DRL architecture[J]. Space: Science and Technology, 3, 12(2023).
[2] Ren W J, Sun J F, Zhou Y et al. Multi-system compatible coherent detection technology of satellite laser communication[J]. Acta Optica Sinica, 43, 1206002(2023).
[3] Liu Z, Jiang Q F, Liu S T et al. Research progress of space laser communication networking technology[J/OL]. Chinese Optic, 1-24. http:∥www.chineseoptics.net.cn/cn/article/doi/10.37188/CO.2023-0140?viewType=HTML
[4] Toyoshima M. Recent trends in space laser communications for small satellites and constellations[J]. Journal of Lightwave Technology, 39, 693-699(2021).
[5] Chaudhry A U, Yanikomeroglu H. Laser intersatellite links in a starlink constellation: a classification and analysis[J]. IEEE Vehicular Technology Magazine, 16, 48-56(2021).
[6] Guo H R. Multi-user acquisition tracking method based on liquid crystal optical phased array[D](2019).
[7] Wang J Y. Research on APT technology for space multi-node laser communication networking[D](2023).
[8] Zhang K Q, Zhang L Z, Bai Y Y et al. Model predictive control for coarse tracking system of optical communication in space network[J]. Laser Journal, 43, 17-22(2022).
[9] Wang W J, Xu W, Piao Y J et al. Control system for coarse tracking turntable of laser communication between satellites[J]. Optics and Precision Engineering, 29, 2797-2805(2021).
[10] Wang D H, Kong G L, Chen S L. Precision control of airborne laser communication optical axis using sliding mode observer[J]. Infrared and Laser Engineering, 51, 20210460(2022).
[11] Liu Y Z, Dong Y, Wang W et al. Friction model identification and compensation strategy for photoelectric tracking system[J]. Infrared and Laser Engineering, 52, 20230151(2023).
[12] Fu C F, Tan W. Tuning of linear ADRC with known plant information[J]. ISA Transactions, 65, 384-393(2016).
[13] Wang L, Li X T, Liu Y Z et al. High-precision control of aviation photoelectric-stabilized platform using extended state observer-based Kalman filter[J]. Sensors, 23, 9204(2023).
[14] Zhang C X, Sun C S, Wu J B et al. Improved active disturbance rejection control based on Kalman filter for fast steering mirror[J]. Chinese Journal of Lasers, 51, 1306002(2024).
[15] Zhang Y J, Zhang P, Ran C P et al. Application of a disturbance separation active disturbance rejection control in photoelectric stabilized platform[J]. Infrared and Laser Engineering, 50, 20210068(2021).
[16] Kong L X, Cheng T, Su C X et al. Tip-tilt mirror control method using Smith predictor and filter-based linear active disturbance rejection[J]. Chinese Journal of Lasers, 50, 1305001(2023).
[17] Gao Y X, Hou Y L, Gao Q et al. Compound control method of ADRC and FNTSM for airborne object tracking system[J]. Acta Armamentarii, 44, 1071-1085(2023).
[18] Wang J Y, Song Y S, Tong S F et al. Linkage tracking control technology of space laser communication network mirror[J]. Chinese Optics, 13, 537-546(2020).
[19] Wang J Y, Song Y S, Jiang H L et al. Prototype development of multi-target tracking system for space multi-node laser communication network[J]. Optik, 274, 170552(2023).
[20] Guo C Y, Liu J K, Cheng J B et al. Compound control strategy of satellite laser communication coarse tracking system[J]. Optics and Precision Engineering, 28, 946-953(2020).