• Journal of Semiconductors
  • Vol. 41, Issue 1, 011901 (2020)
Jingzhong Yang, Michael Zopf, and Fei Ding
Author Affiliations
  • Institute of Solid State Physics, Leibniz University of Hannover, Hannover 30167, Germany
  • show less
    DOI: 10.1088/1674-4926/41/1/011901 Cite this Article
    Jingzhong Yang, Michael Zopf, Fei Ding. Strain tunable quantum dot based non-classical photon sources[J]. Journal of Semiconductors, 2020, 41(1): 011901 Copy Citation Text show less
    References

    [1] H J Briegel, W Dür, J I Cirac et al. Quantum repeaters: The role of imperfect local operations in quantum communication. Phys Rev Lett, 81, 5932(1998).

    [2] C Simon, H de Riedmatten, M Afzelius et al. Quantum repeaters with photon pair sources and multimode memories. Phys Rev Lett, 98, 190503(2007).

    [3] N Sangouard, C Simon, H de Riedmatten et al. Quantum repeaters based on atomic ensembles and linear optics. Rev Mod Phys, 83, 33(2011).

    [4] P Kok, W J Munro, K Nemoto et al. Linear optical quantum computing with photonic qubits. Rev Mod Phys, 79, 135(2007).

    [5] E Knill, R Laflamme, G J Milburn. A scheme for efficient quantum computation with linear optics. Nature, 409, 46(2001).

    [6] N Gisin, G Ribordy, W Tittel et al. Quantum cryptography. Rev Mod Phys, 74, 145(2002).

    [7] A K Ekert. Quantum cryptography based on Bell’s theorem. Phys Rev Lett, 67, 661(1991).

    [8] J P Dowling, K P Seshadreesan. Quantum optical technologies for metrology, sensing, and imaging. J Lightwave Technol, 33, 2359(2015).

    [9] V Giovannetti, S Lloyd, L Maccone. Quantum metrology. Phys Rev Lett, 96, 010401(2006).

    [10] I Afek, O Ambar, Y Silberberg. High-NOON states by mixing quantum and classical light. Science, 328, 879(2010).

    [11] B Schumacher. Quantum coding. Phys Rev A, 51, 2738(1995).

    [12] C H Bennett, G Brassard, S Popescu et al. Purification of noisy entanglement and faithful teleportation via noisy channels. Phys Rev Lett, 76, 722(1996).

    [13] D Deutsch, A Ekert, R Jozsa et al. Quantum privacy amplification and the security of quantum cryptography over noisy channels. Phys Rev Lett, 77, 2818(1996).

    [14] D C Burnham, D L Weinberg. Observation of simultaneity in parametric production of optical photon pairs. Phys Rev Lett, 25, 84(1970).

    [15] Y H Shih, C O Alley. New type of Einstein-Podolsky-Rosen-Bohm experiment using pairs of light quanta produced by optical parametric down conversion. Phys Rev Lett, 61, 2921(1988).

    [16] P G Kwiat, K Mattle, H Weinfurter et al. New high-intensity source of polarization-entangled photon pairs. Phys Rev Lett, 75, 4337(1995).

    [17] C H Bennett, G Brassard, C Crépeau et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys Rev Lett, 70, 1895(1993).

    [18] L Vaidman. Teleportation of quantum states. Phys Rev A, 49, 1473(1994).

    [19] D Bouwmeester, J W Pan, K Mattle et al. Experimental quantum teleportation. Nature, 390, 575(1997).

    [20] D Boschi, S Branca, F De Martini et al. Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys Rev Lett, 80, 1121(1998).

    [21] J Nilsson, R M Stevenson, M H A Chan et al. Quantum teleportation using a light-emitting diode. Nat Photonics, 7, 311(2013).

    [22] J Huwer, R M Stevenson, J Skiba-Szymanska et al. Quantum-dot-based telecommunication-wavelength quantum relay. Phys Rev Appl, 8, 1(2017).

    [23] M Żukowski, A Zeilinger, M A Horne et al. “Event-ready-detectors” bell experiment via entanglement swapping. Phys Rev Lett, 71, 4287(1993).

    [24] J W Pan, D Bouwmeester, H Weinfurter et al. Experimental entanglement swapping: entangling photons that never interacted. Phys Rev Lett, 80, 3891(1998).

    [25] Q C Sun, Y L Mao, Y F Jiang et al. Entanglement swapping with independent sources over an optical-fiber network. Phys Rev A, 95, 32306(2017).

    [26] Y Zhang, M Agnew, T Roger et al. Simultaneous entanglement swapping of multiple orbital angular momentum states of light. Nat Commun, 8, 1(2017).

    [27] J W Pan, C Simon, Č Brukner et al. Entanglement purification for quantum communication. Nature, 410, 1067(2001).

    [28] D Bouwmeester, J W Pan, M Bongaerts et al. Observation of three-photon greenberger-horne-zeilinger entanglement. Phys Rev Lett, 82, 1345(1999).

    [29] C Zhang, g Y F Huang, u B H Liu et al. Experimental generation of a high-fidelity four-photon linear cluster state. Phys Rev A, 93, 062329(2016).

    [30] J W Pan, M Daniell, S Gasparoni et al. Experimental demonstration of four-photon entanglement and high-fidelity teleportation. Phys Rev Lett, 86, 4435(2001).

    [31] C Y Lu, X Q Zhou, O Gühne et al. Experimental entanglement of six photons in graph states. Nat Phys, 3, 91(2007).

    [32] P Michler, A Kiraz, C Becher et al. A quantum dot single-photon turnstile device. Science, 290, 2282(2000).

    [33] P Michler, A Imamoğlu, M D Mason et al. Quantum correlation among photons from a single quantum dot at room temperature. Nature, 406, 968(2000).

    [34] A G Radnaev, Y O Dudin, R Zhao et al. A quantum memory with telecom-wavelength conversion. Nat Phys, 6, 894(2010).

    [35] T Chanelière, D N Matsukevich, S D Jenkins et al. Quantum telecommunication based on atomic cascade transitions. Phys Rev Lett, 96, 093604(2006).

    [36] R M Stevenson, R J Young, P Atkinson et al. A semiconductor source of triggered entangled photon pairs. Nature, 439, 179(2006).

    [37] A J Bennett, M A Pooley, R M Stevenson et al. Electric-field-induced coherent coupling of the exciton states in a single quantum dot. Nat Phys, 6, 947(2010).

    [38] C L Salter, R M Stevenson, I Farrer et al. An entangled-light-emitting diode. Nature, 465, 594(2010).

    [39] Y Chen, J Zhang, M Zopf et al. Wavelength-tunable entangled photons from silicon-integrated III–V quantum dots. Nat Commun, 7, 10387(2016).

    [40] N C Harris, D Grassani, A Simbula et al. Integrated source of spectrally filtered correlated photons for large-scale quantum photonic systems. Phys Rev X, 4, 041047(2014).

    [41] M Zopf, R Keil, Y Chen et al. Entanglement swapping with semiconductor-generated photons. Phys Rev Lett, 9, 123(2001).

    [42] L J Rogers, K D Jahnke, T Teraji et al. Multiple intrinsically identical single-photon emitters in the solid state. Nat Commun, 5, 4379(2014).

    [43] A J Morfa, B C Gibson, M Karg et al. Single-photon emission and quantum characterization of zinc oxide defects. Nano Lett, 12, 949(2012).

    [44] C Kurtsiefer, S Mayer, P Zarda et al. Stable solid-state source of single photons. Phys Rev Lett, 85, 290(2000).

    [45] D A Simpson, E Ampem-Lassen, B C Gibson et al. A highly efficient two level diamond based single photon source. App Phys Lett, 94, 203107(2009).

    [46] I Aharonovich, D Englund, M Toth. Solid-state single-photon emitters. Nat Photon, 10, 631(2016).

    [47] R W Boyd, S G Lukishova, V N Zadkov. Quantum photonics: pioneering advances and emerging applications. Springer(2019).

    [48]

    [49] M A Dupertuis, K F Karlsson, D Y Oberli et al. Symmetries and the polarized optical spectra of exciton complexes in quantum dots. Phys Rev Lett, 107, 127403(2011).

    [50] M Bayer, G Ortner, O Stern et al. Fine structure of neutral and charged excitons in self-assembled In(Ga)As/(Al)GaAs quantum dots. Phys Rev B, 65, 195315(2002).

    [51] R M Stevenson, A J Hudson, A J Bennett et al. Evolution of entanglement between distinguishable light states. Phys Rev Lett, 101, 170501(2008).

    [52] R Trotta, J S Wildmann, E Zallo et al. Highly entangled photons from hybrid piezoelectric-semiconductor quantum dot devices. Nano Lett, 14, 3439(2014).

    [53] A J Hudson, R M Stevenson, A J Bennett et al. Coherence of an entangled exciton-photon state. Phys Rev Lett, 99, 266802(2007).

    [54] R Keil, M Zopf, Y Chen et al. Solid-state ensemble of highly entangled photon sources at rubidium atomic transitions. Nat Commun, 8, 15501(2017).

    [55] S Kiravittaya, H S Lee, L Balet et al. Tuning optical modes in slab photonic crystal by atomic layer deposition and laser-assisted oxidation. J Appl Phys, 109, 053115(2011).

    [56] D J P Ellis, R M Stevenson, R J Young et al. Control of fine-structure splitting of individual InAs quantum dots by rapid thermal annealing. Appl Phys Lett, 90, 011907(2007).

    [57] M A Pooley, A J Bennett, R M Stevenson et al. Energy-tunable quantum dot with minimal fine structure created by using simultaneous electric and magnetic fields. Phys Rev Appl, 1, 024002(2014).

    [58] M Ghali, K Ohtani, Y Ohno et al. Generation and control of polarization-entangled photons from GaAs island quantum dots by an electric field. Nat Commun, 3, 661(2012).

    [59] A Muller, W Fang, J Lawall et al. Creating polarization-entangled photon pairs from a semiconductor quantum dot using the optical stark effect. Phys Rev Lett, 103, 217402(2009).

    [60] F Ding, R Singh, J D Plumhof et al. Tuning the exciton binding energies in single self-assembled InGaAs/GaAs quantum dots by piezoelectric-induced biaxial stress. Phys Rev Lett, 104, 2(2010).

    [61] J Zhang, F Ding, E Zallo et al. A nanomembrane-based wavelength-tunable high-speed single-photon-emitting diode. Nano Lett, 13, 5808(2013).

    [62] J Zhang, E Zallo, B Höfer et al. Electric-field-induced energy tuning of on-demand entangled-photon emission from self-assembled quantum dots. Nano Lett, 17, 501(2017).

    [63] J Zhang, Y Huo, F Ding et al. Energy-tunable single-photon light-emitting diode by strain fields. Appl Phys B, 122, 1(2016).

    [64] B Höfer, J Zhang, J Wildmann et al. Independent tuning of excitonic emission energy and decay time in single semiconductor quantum dots. Appl Phys Lett, 110, 151102(2017).

    [65] J Zhang, J S Wildmann, F Ding et al. High yield and ultrafast sources of electrically triggered entangled-photon pairs based on strain-tunable quantum dots. Nat Commun, 6, 10067(2015).

    [66] Y H Huo, B J Witek, S Kumar et al. A light-hole exciton in a quantum dot. Nat Phys, 10, 46(2013).

    [67] J Zhang, Y Huo, A Rastelli et al. Single photons on-demand from light-hole excitons in strain-engineered quantum dots. Nano Lett, 15, 422(2015).

    [68] J Wang, M Gong, G C Guo et al. Towards scalable entangled photon sources with self-assembled InAs/GaAs quantum dots. Phys Rev Lett, 115, 067401(2015).

    [69] R Trotta, J Martín-Sánchez, I Daruka et al. Energy-tunable sources of entangled photons: a viable concept for solid-state-based quantum relays. Phys Rev Lett, 114, 150502(2015).

    [70] Y Chen, I E Zadeh, K D Jöns et al. Controlling the exciton energy of a nanowire quantum dot by strain fields. Appl Phys Lett, 108, 182103(2016).

    [71] M A M Versteegh, M E Reimer, K D Jöns et al. Observation of strongly entangled photon pairs from a nanowire quantum dot. Nat Commun, 5, 5298(2014).

    [72] G Bulgarini, M E Reimer, M B Bavinck et al. Nanowire waveguides launching single photons in a Gaussian mode for ideal fiber coupling. Nano Lett, 14, 1428(2014).

    [73] M Davanço, M T Rakher, D Schuh et al. A circular dielectric grating for vertical extraction of single quantum dot emission. Appl Phys Lett, 99, 041102(2011).

    [74] J Liu, R Su, Y Wei et al. A solid-state source of strongly entangled photon pairs with high brightness and indistinguishability. Nat Nanotechnol, 14, 586(2019).

    [75] H Wang, H Hu, T H Chung et al. On-demand semiconductor source of entangled photons which simultaneously has high fidelity, efficiency, and indistinguishability. Phys Rev Lett, 122, 113602(2019).

    [76] M Moczała-Dusanowska, Ł Dusanowski, S Gerhardt et al. Strain-tunable single-photon source based on a quantum dot–micropillar system. ACS Photonics, 6, 2025(2019).

    [77] H Jung, D G Gweon. Creep characteristics of piezoelectric actuators. Rev Sci Instrum, 71, 1896(2000).

    [78] M Zopf, T Macha, R Keil et al. Frequency feedback for two-photon interference from separate quantum dots. Phys Rev B, 98, 161302(2018).

    [79]

    [80] G E Pikus. Effect of deformation on the hole energy spectrum of germanium and silicon. Sov Phys-Solid State, 11502(1960).

    [81]

    [82] R Trotta, P Atkinson, J D Plumhof et al. Nanomembrane quantum-light-emitting diodes integrated onto piezoelectric actuators. Adv Mater, 24, 2668(2012).

    [83] S Kumar, R Trotta, E Zallo et al. Strain-induced tuning of the emission wavelength of high quality GaAs/AlGaAs quantum dots in the spectral range of the 87Rb D2 lines. Appl Phys Lett, 99, 161118(2011).

    [84] J D Plumhof, R Trotta, V Křápek et al. Tuning of the valence band mixing of excitons confined in GaAs/AlGaAs quantum dots via piezoelectric-induced anisotropic strain. Phys Rev B, 87, 075311(2013).

    [85] O Benson, C Santori, M Pelton et al. Regulated and entangled photons from a single quantum dot. Phys Rev Lett, 84, 2513(2000).

    [86] M B Ward, M C Dean, R M Stevenson et al. Coherent dynamics of a telecom-wavelength entangled photon source. Nat Commun, 5, 3316(2014).

    [87] C Santori, D Fattal, M Pelton et al. Polarization-correlated photon pairs from a single quantum dot. Phys Rev B, 66, 045308(2002).

    [88] R M Stevenson, R M Thompson, A J Shields et al. Quantum dots as a photon source for passive quantum key encoding. Phys Rev B, 66, 081302(2002).

    [89] G Bester. Electronic excitations in nanostructures: an empirical pseudopotential based approach. J Phys: Condens Matter, 21, 023202(2008).

    [90] F Ding, H Ji, Y Chen et al. Stretchable graphene: a close look at fundamental parameters through biaxial straining. Nano Lett, 10, 3453(2010).

    [91] E Zallo, R Trotta, V Křápek et al. Strain-induced active tuning of the coherent tunneling in quantum dot molecules. Phys Rev B, 89, 241303(2014).

    [92] S Meesala, Y I Sohn, B Pingault et al. Strain engineering of the silicon-vacancy center in diamond. Phys Rev B, 97, 205444(2018).

    [93] G Kiršanskė, H Thyrrestrup, R S Daveau et al. Indistinguishable and efficient single photons from a quantum dot in a planar nanobeam waveguide. Phys Rev B, 96, 165306(2017).

    [94] P Lodahl. Quantum-dot based photonic quantum networks. Quantum Sci Technol, 3, 013001(2017).

    [95] R S Daveau, K C Balram, T Pregnolato et al. Efficient fiber-coupled single-photon source based on quantum dots in a photonic-crystal waveguide. Optica, 4, 178(2017).

    [96] J W Pan, S Gasparoni, R Ursin. Experimental entanglement purification of arbitrary unknown states. Nature, 423, 417(2003).

    [97] L K Chen, H L Yong, P Xu et al. Experimental nested purification for a linear optical quantum repeater. Nat Photon, 11, 695(2017).

    [98] Y B Sheng, L Zhou, G L Long. Hybrid entanglement purification for quantum repeaters. Phys Rev A, 88, 022302(2013).

    [99] H de Riedmatten, I Marcikic, W Tittel et al. Long distance quantum teleportation in a quantum relay configuration. Phys Rev Lett, 92, 047904(2004).

    [100] A J Bennett, D C Unitt, P See et al. Electrical control of the uncertainty in the time of single photon emission events. Phys Rev B, 72, 033316(2005).

    [101] M Reischle, C Kessler, W M Schulz et al. Triggered single-photon emission from electrically excited quantum dots in the red spectral range. Appl Phys Lett, 97, 143513(2010).

    [102] F Hargart, C A Kessler, T Schwarzbäck et al. Electrically driven quantum dot single-photon source at 2 GHz excitation repetition rate with ultra-low emission time jitter. Appl Phys Lett, 102, 011126(2013).

    [103] V Troncale, K F Karlsson, E Pelucchi et al. Control of valence band states in pyramidal quantum dot-in-dot semiconductor heterostructures. Appl Phys Lett, 91, 241909(2007).

    [104] K F Karlsson, M A Dupertuis, D Y Oberli et al. Fine structure of exciton complexes in high-symmetry quantum dots: Effects of symmetry breaking and symmetry elevation. Phys Rev B, 81, 161307(2010).

    [105] R Vrijen, E Yablonovitch. A spin-coherent semiconductor photo-detector for quantum communication. Physica E, 10, 569(2001).

    [106] D Sleiter, W F Brinkman. Using holes in GaAs as qubits: An estimate of the Rabi frequency in the presence of an external RF field. Phys Rev B, 74, 153312(2006).

    [107] H Kosaka, T Inagaki, Y Rikitake et al. Spin state tomography of optically injected electrons in a semiconductor. Nature, 457, 702(2009).

    [108] L L Besombes, K K Kheng, D Martrou. Exciton and biexciton fine structure in single elongated islands grown on a vicinal surface. Phys Rev Lett, 85, 425(2000).

    [109] T Belhadj, T Amand, A Kunold et al. Impact of heavy hole-light hole coupling on optical selection rules in GaAs quantum dots. Appl Phys Lett, 97, 051111(2010).

    [110] W Zhou, H Shen, J Pamulapati et al. Heavy- and light-hole band crossing in a variable-strain quantum-well heterostructure. Phys Rev B, 51, 5461(1995).

    [111] W Zhou, H Shen, J J Pamulapati et al. Simultaneous blue- and red-shift of light-hole and heavy-hole band in a novel variable-strain quantum well heterostructure. Appl Phys Lett, 66, 607(1995).

    [112] Y H Huo, A Rastelli, O G Schmidt. Ultra-small excitonic fine structure splitting in highly symmetric quantum dots on GaAs (001) substrate. Appl Phys Lett, 102, 152105(2013).

    [113] B J Witek, R W Heeres, U Perinetti et al. Measurement of the g-factor tensor in a quantum dot and disentanglement of exciton spins. Phys Rev B, 84, 195305(2011).

    [114] X L Wang, L K Chen, W W Li et al. Experimental ten-photon entanglement. Phys Rev Lett, 117, 210502(2016).

    [115] V Scarani, H de Riedmatten, I Marcikic et al. Four-photon correction in two-photon Bell experiments. Eur Phys J D, 32, 129(2005).

    [116] S Seidl, A Högele, M Kroner et al. Tuning the cross-gap transition energy of a quantum dot by uniaxial stress. Physica E, 32, 14(2006).

    [117] G W Bryant, M Zieliński, Malkova N N et al. Effect of mechanical strain on the optical properties of quantum dots: controlling exciton shape, orientation, and phase with a mechanical strain. Phys Rev Lett, 105, 067404(2010).

    [118]

    [119]

    [120] M Gong, W Zhang, G C Guo et al. Exciton polarization, fine-structure splitting, and the asymmetry of quantum dots under uniaxial stress. Phys Rev Lett, 106, 227401(2011).

    [121] R Singh, G Bester. Lower bound for the excitonic fine structure splitting in self-assembled quantum dots. Phys Rev Lett, 104, 196803(2010).

    [122] M Müller, S Bounouar, K D Jöns et al. On-demand generation of indistinguishable polarization-entangled photon pairs. Nat Photonics, 8, 224(2014).

    [123] J B Altepeter, E R Jeffrey, P G Kwiat. Photonic state tomography. Adv Atom, Mol, Opt Phys, 52, 105(2015).

    [124] D F V James, P G Kwiat, W J Munro et al. Measurement of qubits. Phys Rev A, 64, 052312(2001).

    [125] A Dousse, J Suffczyński, A Beveratos et al. Ultrabright source of entangled photon pairs. Nature, 466, 217(2010).

    [126] Y Chen, M Zopf, R Keil et al. Highly-efficient extraction of entangled photons from quantum dots using a broadband optical antenna. Nat Commun, 9, 1(2018).

    [127] A Kuhn, M Hennrich, G Rempe. Deterministic single-photon source for distributed quantum networking. Phys Rev Lett, 89, 067901(2002).

    [128] E B Flagg, A Muller, S V Polyakov et al. Interference of single photons from two separate semiconductor quantum dots. Phys Rev Lett, 104, 137401(2010).

    [129] I Friedler, C Sauvan, J P Hugonin et al. Solid-state single photon sources: the nanowire antenna. Opt Express, 17, 2095(2009).

    [130] T Heindel, C Schneider, M Lermer et al. Electrically driven quantum dot-micropillar single photon source with 34% overall efficiency. Appl Phys Lett, 96, 011107(2010).

    [131] M E Reimer, G Bulgarini, N Akopian et al. Bright single-photon sources in bottom-up tailored nanowires. Nat Commun, 3, 737(2012).

    [132] G Bulgarini, D D Dalacu, P J P J Poole et al. Far field emission profile of pure wurtzite InP nanowires. Appl Phys Lett, 105, 191113(2014).

    [133] N Gregersen, T R Nielsen, J Claudon et al. Controlling the emission profile of a nanowire with a conical taper. Opt Lett, OL, 33, 1693(2008).

    [134] D Dalacu, K Mnaymneh, J Lapointe et al. Ultraclean emission from InAsP quantum dots in defect-free wurtzite InP nanowires. Nano Lett, 12, 5919(2012).

    [135] M E Reimer, G Bulgarini, A Fognini et al. Overcoming power broadening of the quantum dot emission in a pure wurtzite nanowire. Phys Rev B, 93, 195316(2016).

    [136] G Signorello, S Karg, M T Björk et al. Tuning the light emission from GaAs nanowires over 290 meV with uniaxial strain. Nano Lett, 13, 917(2013).

    [137] P E Kremer, A C Dada, P Kumar et al. Strain-tunable quantum dot embedded in a nanowire antenna. Phys Rev B, 90, 201408(2014).

    [138] A A Politi, M J Cryan, J G Rarity et al. Silica-on-silicon waveguide quantum circuits. Science, 320, 646(2008).

    [139] J W Silverstone, D Bonneau, K Ohira et al. On-chip quantum interference between silicon photon-pair sources. Nat Photonics, 8, 104(2014).

    [140] N Najafi, J Mower, N C Harris et al. On-chip detection of non-classical light by scalable integration of single-photon detectors. Nat Commun, 6, 5873(2015).

    [141] J L O’Brien, A Furusawa, J Vučković. Photonic quantum technologies. Nat Photonics, 3, 687(2009).

    [142] J D Plumhof, V Křápek, F Ding et al. Strain-induced anticrossing of bright exciton levels in single self-assembled GaAs/AlxGa1–xAs and InxGa1–xAs/GaAs quantum dots. Phys Rev B, 83, 121302(2011).

    [143] V Giesz, S L Portalupi, T Grange et al. Cavity-enhanced two-photon interference using remote quantum dot sources. Phys Rev B, 92, 161302(2015).

    [144] A Thoma, P Schnauber, J Böhm et al. Two-photon interference from remote deterministic quantum dot microlenses. Appl Phys Lett, 110, 011104(2017).

    [145]

    [146] J H Prechtel, A V Kuhlmann, J Houel et al. Frequency-stabilized source of single photons from a solid-state qubit. Phys Rev X, 3, 041006(2013).

    [147] M Metcalfe, A Muller, G S Solomon et al. Active feedback of a Fabry-Perot cavity to the emission of a single InAs/GaAs quantum dot. J Opt Soc Am B, 26, 2308(2009).

    [148] K Brunner, G Abstreiter, G Böhm et al. Sharp-line photoluminescence and two-photon absorption of zero-dimensional biexcitons in a GaAs/AlGaAs structure. Phys Rev Lett, 73, 1138(1994).

    [149] J Bylander, I Robert-Philip, I Abram. Interference and correlation of two independent photons. Eur Phys J D, 22, 295(2003).

    Jingzhong Yang, Michael Zopf, Fei Ding. Strain tunable quantum dot based non-classical photon sources[J]. Journal of Semiconductors, 2020, 41(1): 011901
    Download Citation