• Acta Optica Sinica
  • Vol. 39, Issue 6, 0630003 (2019)
Dong Yang1、2, Zhongquan Nie1、2、*, Aiping Zhai1、2, Yanting Tian1、2, and Baohua Jia3、**
Author Affiliations
  • 1 Key Laboratory of Advanced Transducers and Intelligent Control System, Ministry of Education, Taiyuan University of Technology, Taiyuan, Shanxi 0 30024, China
  • 2 College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan, Shanxi 0 30024, China
  • 3 Centre for Micro-Photonics, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Melbourne 3122, Australia
  • show less
    DOI: 10.3788/AOS201939.0630003 Cite this Article Set citation alerts
    Dong Yang, Zhongquan Nie, Aiping Zhai, Yanting Tian, Baohua Jia. Surface-Enhanced Raman Scattering Performances of GO/AuNRs Composite Substrates Excited by Radially Polarized Light[J]. Acta Optica Sinica, 2019, 39(6): 0630003 Copy Citation Text show less
    References

    [1] Fleischmann M, Hendra P J. McQuillan A J. Raman spectra of pyridine adsorbed at a silver electrode[J]. Chemical Physics Letters, 26, 163-166(1974). http://www.sciencedirect.com/science/article/pii/0009261474853881

         Fleischmann M, Hendra P J. McQuillan A J. Raman spectra of pyridine adsorbed at a silver electrode[J]. Chemical Physics Letters, 26, 163-166(1974). http://www.sciencedirect.com/science/article/pii/0009261474853881

    [2] Sarma T K, Chattopadhyay A. Starch-mediated shape-selective synthesis of Au nanoparticles with tunable longitudinal plasmon resonance[J]. Langmuir, 20, 3520-3524(2004). http://pubs.acs.org/doi/pdf/10.1021/la049970g

         Sarma T K, Chattopadhyay A. Starch-mediated shape-selective synthesis of Au nanoparticles with tunable longitudinal plasmon resonance[J]. Langmuir, 20, 3520-3524(2004). http://pubs.acs.org/doi/pdf/10.1021/la049970g

    [3] Hering K, Cialla D, Ackermann K et al. SERS: a versatile tool in chemical and biochemical diagnostics[J]. Analytical and Bioanalytical Chemistry, 390, 113-124(2008). http://link.springer.com/article/10.1007/s00216-007-1667-3

         Hering K, Cialla D, Ackermann K et al. SERS: a versatile tool in chemical and biochemical diagnostics[J]. Analytical and Bioanalytical Chemistry, 390, 113-124(2008). http://link.springer.com/article/10.1007/s00216-007-1667-3

    [4] Ding S Y, Wu D Y, Yang Z L et al. Some progresses in mechanistic studies on surface-enhanced raman scattering[J]. Chemical Journal of Chinese Universities, 29, 2569-2581(2008).

         Ding S Y, Wu D Y, Yang Z L et al. Some progresses in mechanistic studies on surface-enhanced raman scattering[J]. Chemical Journal of Chinese Universities, 29, 2569-2581(2008).

    [5] Tong L M, Zhu T, Liu Z F. Approaching the electromagnetic mechanism of surface-enhanced Raman scattering: from self-assembled arrays to individual gold nanoparticles[J]. Chemical Society Reviews, 40, 1296-1304(2011). http://www.ncbi.nlm.nih.gov/pubmed/21125088/

         Tong L M, Zhu T, Liu Z F. Approaching the electromagnetic mechanism of surface-enhanced Raman scattering: from self-assembled arrays to individual gold nanoparticles[J]. Chemical Society Reviews, 40, 1296-1304(2011). http://www.ncbi.nlm.nih.gov/pubmed/21125088/

    [6] Park W H, Kim Z H. Charge transfer enhancement in the SERS of a single molecule[J]. Nano Letters, 10, 4040-4048(2010). http://europepmc.org/abstract/MED/20857978

         Park W H, Kim Z H. Charge transfer enhancement in the SERS of a single molecule[J]. Nano Letters, 10, 4040-4048(2010). http://europepmc.org/abstract/MED/20857978

    [7] Stiles P L, Dieringer J A, Shah N C et al. Surface-enhanced Raman spectroscopy[J]. Annual Review of Analytical Chemistry, 1, 601-626(2008).

         Stiles P L, Dieringer J A, Shah N C et al. Surface-enhanced Raman spectroscopy[J]. Annual Review of Analytical Chemistry, 1, 601-626(2008).

    [8] Tian Z Q, Ren B, Wu D Y. Surface-enhanced Raman scattering: from noble to transition metals and from rough surfaces to ordered nanostructures[J]. The Journal of Physical Chemistry B, 106, 9463-9483(2002). http://pubs.acs.org/doi/pdf/10.1021/jp0257449

         Tian Z Q, Ren B, Wu D Y. Surface-enhanced Raman scattering: from noble to transition metals and from rough surfaces to ordered nanostructures[J]. The Journal of Physical Chemistry B, 106, 9463-9483(2002). http://pubs.acs.org/doi/pdf/10.1021/jp0257449

    [9] Eustis S. El-Sayed M A. Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes[J]. Chemical Society Reviews, 35, 209-217(2006).

         Eustis S. El-Sayed M A. Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes[J]. Chemical Society Reviews, 35, 209-217(2006).

    [10] Zhang X L, Zhang J, Zhu Y. Raman enhancement and structural parameters optimization of silver nanoparticles/carbon nanotubes composite structure[J]. Acta Optica Sinica, 38, 0430004(2018).

         Zhang X L, Zhang J, Zhu Y. Raman enhancement and structural parameters optimization of silver nanoparticles/carbon nanotubes composite structure[J]. Acta Optica Sinica, 38, 0430004(2018).

    [11] Xu B B, Zhang R, Liu X Q et al. On-chip fabrication of silver microflower arrays as a catalytic microreactor for allowing in situ SERS monitoring[J]. Chemical Communications, 48, 1680-1682(2012). http://www.ncbi.nlm.nih.gov/pubmed/22187098

         Xu B B, Zhang R, Liu X Q et al. On-chip fabrication of silver microflower arrays as a catalytic microreactor for allowing in situ SERS monitoring[J]. Chemical Communications, 48, 1680-1682(2012). http://www.ncbi.nlm.nih.gov/pubmed/22187098

    [12] Ling X, Xie L M, Fang Y et al. Can graphene be used as a substrate for Raman enhancement?[J]. Nano Letters, 10, 553-561(2010). http://www.ncbi.nlm.nih.gov/pubmed/20039694

         Ling X, Xie L M, Fang Y et al. Can graphene be used as a substrate for Raman enhancement?[J]. Nano Letters, 10, 553-561(2010). http://www.ncbi.nlm.nih.gov/pubmed/20039694

    [13] Lombardi J R, Birke R L, Lu T H et al. Charge-transfer theory of surface enhanced Raman spectroscopy: Herzberg-Teller contributions[J]. The Journal of Chemical Physics, 84, 4174-4180(1986). http://scitation.aip.org/content/aip/journal/jcp/84/8/10.1063/1.450037

         Lombardi J R, Birke R L, Lu T H et al. Charge-transfer theory of surface enhanced Raman spectroscopy: Herzberg-Teller contributions[J]. The Journal of Chemical Physics, 84, 4174-4180(1986). http://scitation.aip.org/content/aip/journal/jcp/84/8/10.1063/1.450037

    [14] Roy D, Furtak T E. Characterization of surface complexes in enhanced Raman scattering[J]. The Journal of Chemical Physics, 81, 4168-4175(1984). http://scitation.aip.org/content/aip/journal/jcp/81/9/10.1063/1.448129

         Roy D, Furtak T E. Characterization of surface complexes in enhanced Raman scattering[J]. The Journal of Chemical Physics, 81, 4168-4175(1984). http://scitation.aip.org/content/aip/journal/jcp/81/9/10.1063/1.448129

    [15] Zheng X R, Jia B H, Chen X et al. In situ third-order non-linear responses during laser reduction of graphene oxide thin films towards on-chip non-linear photonic devices[J]. Advanced Materials, 26, 2699-2703(2014). http://onlinelibrary.wiley.com/doi/10.1002/adma.201304681/full

         Zheng X R, Jia B H, Chen X et al. In situ third-order non-linear responses during laser reduction of graphene oxide thin films towards on-chip non-linear photonic devices[J]. Advanced Materials, 26, 2699-2703(2014). http://onlinelibrary.wiley.com/doi/10.1002/adma.201304681/full

    [16] Zheng X R, Jia B H, Lin H et al. Highly efficient and ultra-broadband graphene oxide ultrathin lenses with three-dimensional subwavelength focusing[J]. Nature Communications, 6, 8433(2015). http://pubmedcentralcanada.ca/pmcc/articles/PMC4595752/

         Zheng X R, Jia B H, Lin H et al. Highly efficient and ultra-broadband graphene oxide ultrathin lenses with three-dimensional subwavelength focusing[J]. Nature Communications, 6, 8433(2015). http://pubmedcentralcanada.ca/pmcc/articles/PMC4595752/

    [17] Zhao Y C, Nie Z Q, Zhai A P et al. Optical super-resolution effect induced by nonlinear characteristics of graphene oxide films[J]. Optoelectronics Letters, 14, 21-24(2018). http://www.opticsjournal.net/Articles/Abstract?aid=OJ180917000007mSpVrY

         Zhao Y C, Nie Z Q, Zhai A P et al. Optical super-resolution effect induced by nonlinear characteristics of graphene oxide films[J]. Optoelectronics Letters, 14, 21-24(2018). http://www.opticsjournal.net/Articles/Abstract?aid=OJ180917000007mSpVrY

    [18] Wang S C, Ouyang X Y, Feng Z W et al. Diffractive photonic applications mediated by laser reduced graphene oxides[J]. Opto-Electronic Advances, 1, 17000201(2018). http://www.opticsjournal.net/ViewObject.htm?oid=OJ1808010000395A7D0G&otype=OJ

         Wang S C, Ouyang X Y, Feng Z W et al. Diffractive photonic applications mediated by laser reduced graphene oxides[J]. Opto-Electronic Advances, 1, 17000201(2018). http://www.opticsjournal.net/ViewObject.htm?oid=OJ1808010000395A7D0G&otype=OJ

    [19] Yang Y Y, Wu J Y, Xu X Y et al. Invited article: Enhanced four-wave mixing in waveguides integrated with graphene oxide[J]. APL Photonics, 3, 120803(2018).

         Yang Y Y, Wu J Y, Xu X Y et al. Invited article: Enhanced four-wave mixing in waveguides integrated with graphene oxide[J]. APL Photonics, 3, 120803(2018).

    [20] Wu D Y, Liu X M, Duan S et al. Chemical enhancement effects in SERS spectra: a quantum chemical study of pyridine interacting with copper, silver, gold and platinum metals[J]. The Journal of Physical Chemistry C, 112, 4195-4204(2008). http://pubs.acs.org/cgi-bin/abstract.cgi/jpccck/2008/112/i11/abs/jp0760962.html

         Wu D Y, Liu X M, Duan S et al. Chemical enhancement effects in SERS spectra: a quantum chemical study of pyridine interacting with copper, silver, gold and platinum metals[J]. The Journal of Physical Chemistry C, 112, 4195-4204(2008). http://pubs.acs.org/cgi-bin/abstract.cgi/jpccck/2008/112/i11/abs/jp0760962.html

    [21] Furtak T E, Roy D. Nature of the active site in surface-enhanced Raman scattering[J]. Physical Review Letters, 50, 1301-1304(1983). http://adsabs.harvard.edu/abs/1983PhRvL..50.1301F

         Furtak T E, Roy D. Nature of the active site in surface-enhanced Raman scattering[J]. Physical Review Letters, 50, 1301-1304(1983). http://adsabs.harvard.edu/abs/1983PhRvL..50.1301F

    [22] Gao S M, Wang H Y, Lin Y X et al. Surface-enhanced Raman spectra of aflatoxin B1 adsorbed on silver clusters[J]. Acta Physico-Chimica Sinica, 28, 2044-2050(2012).

         Gao S M, Wang H Y, Lin Y X et al. Surface-enhanced Raman spectra of aflatoxin B1 adsorbed on silver clusters[J]. Acta Physico-Chimica Sinica, 28, 2044-2050(2012).

    [23] Huang Q L, Wang J M, Wei W X et al. A facile and green method for synthesis of reduced graphene oxide/Ag hybrids as efficient surface enhanced Raman scattering platforms[J]. Journal of Hazardous Materials, 283, 123-130(2015). http://labs.europepmc.org/abstract/MED/25262484

         Huang Q L, Wang J M, Wei W X et al. A facile and green method for synthesis of reduced graphene oxide/Ag hybrids as efficient surface enhanced Raman scattering platforms[J]. Journal of Hazardous Materials, 283, 123-130(2015). http://labs.europepmc.org/abstract/MED/25262484

    [24] Dorn R, Quabis S, Leuchs G. Sharper focus for a radially polarized light beam[J]. Physical Review Letters, 91, 233901(2003). http://www.tandfonline.com/servlet/linkout?suffix=CIT0004&dbid=8&doi=10.1080%2F09500340903497473&key=14683185

         Dorn R, Quabis S, Leuchs G. Sharper focus for a radially polarized light beam[J]. Physical Review Letters, 91, 233901(2003). http://www.tandfonline.com/servlet/linkout?suffix=CIT0004&dbid=8&doi=10.1080%2F09500340903497473&key=14683185

    [25] Wang H F, Shi L P, Lukyanchuk B et al. Creation of a needle of longitudinally polarized light in vacuum using binary optics[J]. Nature Photonics, 2, 501-505(2008). http://www.nature.com/nphoton/journal/v2/n8/abs/nphoton.2008.127.html

         Wang H F, Shi L P, Lukyanchuk B et al. Creation of a needle of longitudinally polarized light in vacuum using binary optics[J]. Nature Photonics, 2, 501-505(2008). http://www.nature.com/nphoton/journal/v2/n8/abs/nphoton.2008.127.html

    [26] Li X P, Lan T H, Tien C H et al. Three-dimensional orientation-unlimited polarization encryption by a single optically configured vectorial beam[J]. Nature Communications, 3, 998(2012). http://www.europepmc.org/abstract/MED/22893122

         Li X P, Lan T H, Tien C H et al. Three-dimensional orientation-unlimited polarization encryption by a single optically configured vectorial beam[J]. Nature Communications, 3, 998(2012). http://www.europepmc.org/abstract/MED/22893122

    [27] Kozawa Y, Matsunaga D, Sato S. Superresolution imaging via superoscillation focusing of a radially polarized beam[J]. Optica, 5, 86-92(2018). http://www.opticsinfobase.org/optica/abstract.cfm?uri=optica-5-2-86

         Kozawa Y, Matsunaga D, Sato S. Superresolution imaging via superoscillation focusing of a radially polarized beam[J]. Optica, 5, 86-92(2018). http://www.opticsinfobase.org/optica/abstract.cfm?uri=optica-5-2-86

    [28] Dou X J, Yang A P, Min C J et al. Polarization-controlled gap-mode surface-enhanced Raman scattering with a single nanoparticle[J]. Journal of Physics D: Applied Physics, 50, 255302(2017). http://adsabs.harvard.edu/abs/2017JPhD...50y5302D

         Dou X J, Yang A P, Min C J et al. Polarization-controlled gap-mode surface-enhanced Raman scattering with a single nanoparticle[J]. Journal of Physics D: Applied Physics, 50, 255302(2017). http://adsabs.harvard.edu/abs/2017JPhD...50y5302D

    [29] Yang A P, Du L P, Dou X J et al. Sensitive gap-enhanced Raman spectroscopy with a perfect radially polarized beam[J]. Plasmonics, 13, 991-996(2018). http://link.springer.com/10.1007/s11468-017-0597-y

         Yang A P, Du L P, Dou X J et al. Sensitive gap-enhanced Raman spectroscopy with a perfect radially polarized beam[J]. Plasmonics, 13, 991-996(2018). http://link.springer.com/10.1007/s11468-017-0597-y

    [30] Lei X, Liu Y, Huang Z L et al. High sensitivity tapered fiber SERS probe and its application on pesticide residues detection[J]. Acta Optica Sinica, 35, 0806001(2015).

         Lei X, Liu Y, Huang Z L et al. High sensitivity tapered fiber SERS probe and its application on pesticide residues detection[J]. Acta Optica Sinica, 35, 0806001(2015).

    [31] Yin P G, Jiang L, Lang X F et al. Quantitative analysis of mononucleotides by isotopic labeling surface-enhanced Raman scattering spectroscopy[J]. Biosensors and Bioelectronics, 26, 4828-4831(2011). http://www.ncbi.nlm.nih.gov/pubmed/21723110

         Yin P G, Jiang L, Lang X F et al. Quantitative analysis of mononucleotides by isotopic labeling surface-enhanced Raman scattering spectroscopy[J]. Biosensors and Bioelectronics, 26, 4828-4831(2011). http://www.ncbi.nlm.nih.gov/pubmed/21723110

    [32] Han H W, Yan X L, Ban G et al. Surface-enhanced Raman spectra analysis of serum from diabetes mellitus and complication[J]. Acta Optica Sinica, 29, 1122-1125(2009).

         Han H W, Yan X L, Ban G et al. Surface-enhanced Raman spectra analysis of serum from diabetes mellitus and complication[J]. Acta Optica Sinica, 29, 1122-1125(2009).

    [33] Zhao Y X, Peng S J, Zhao J F et al. Surface enhanced Raman scattering for the rapid detection of melamine in milk[J]. Journal of Dairy Science and Technology, 34, 27-29(2011).

         Zhao Y X, Peng S J, Zhao J F et al. Surface enhanced Raman scattering for the rapid detection of melamine in milk[J]. Journal of Dairy Science and Technology, 34, 27-29(2011).

    [34] Liu R M, Liu R M, Wu Y C et al. Investigations on NIR-SERS spectra of serum for liver cancer based on NIR-SERS substrate[J]. Acta Optica Sinica, 31, 0630001(2011).

         Liu R M, Liu R M, Wu Y C et al. Investigations on NIR-SERS spectra of serum for liver cancer based on NIR-SERS substrate[J]. Acta Optica Sinica, 31, 0630001(2011).

    [35] Dong Z H, Liu Y, Qin Y Y et al. Fabrication of fiber SERS probes by laser-induced self-assembly method in a meniscus and its applications in trace detection of pesticide residues[J]. Chinese Journal of Lasers, 45, 0804009(2018).

         Dong Z H, Liu Y, Qin Y Y et al. Fabrication of fiber SERS probes by laser-induced self-assembly method in a meniscus and its applications in trace detection of pesticide residues[J]. Chinese Journal of Lasers, 45, 0804009(2018).

    [36] Fan W, Miao Y E, Ling X Y et al. Free-standing silver nanocube/graphene oxide hybrid paper for surface-enhanced Raman scattering[J]. Chinese Journal of Chemistry, 34, 73-81(2016). http://onlinelibrary.wiley.com/doi/10.1002/cjoc.201500585/pdf

         Fan W, Miao Y E, Ling X Y et al. Free-standing silver nanocube/graphene oxide hybrid paper for surface-enhanced Raman scattering[J]. Chinese Journal of Chemistry, 34, 73-81(2016). http://onlinelibrary.wiley.com/doi/10.1002/cjoc.201500585/pdf

    [37] Zhao Y, Chu B H, Zhang L C et al. Constructing sensitive SERS substrate with a sandwich structure separated by single layer graphene[J]. Sensors and Actuators B: Chemical, 263, 634-642(2018). http://www.sciencedirect.com/science/article/pii/S0925400518303071

         Zhao Y, Chu B H, Zhang L C et al. Constructing sensitive SERS substrate with a sandwich structure separated by single layer graphene[J]. Sensors and Actuators B: Chemical, 263, 634-642(2018). http://www.sciencedirect.com/science/article/pii/S0925400518303071

    [38] Jiao S J, Wang Y K, Chen C et al. Graphene oxide mediated surface-enhanced Raman scattering substrate: well-suspending and label-free detecting for protein[J]. Journal of Molecular Structure, 1062, 48-52(2014). http://www.sciencedirect.com/science/article/pii/S0022286013010983

         Jiao S J, Wang Y K, Chen C et al. Graphene oxide mediated surface-enhanced Raman scattering substrate: well-suspending and label-free detecting for protein[J]. Journal of Molecular Structure, 1062, 48-52(2014). http://www.sciencedirect.com/science/article/pii/S0022286013010983

    [39] Ke S L, Kan C X, Mo B et al. Research progress on the optical properties of gold nanorods[J]. Acta Physico-Chimica Sinica, 28, 1275-1290(2012).

         Ke S L, Kan C X, Mo B et al. Research progress on the optical properties of gold nanorods[J]. Acta Physico-Chimica Sinica, 28, 1275-1290(2012).

    [40] Daniel M C, Astruc D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology[J]. Chemical Reviews, 104, 293-346(2004). http://www.tandfonline.com/servlet/linkout?suffix=CIT0006&dbid=8&doi=10.1080%2F09537325.2011.565666&key=14719978

         Daniel M C, Astruc D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology[J]. Chemical Reviews, 104, 293-346(2004). http://www.tandfonline.com/servlet/linkout?suffix=CIT0006&dbid=8&doi=10.1080%2F09537325.2011.565666&key=14719978

    [41] Polavarapu L. Liz-Marzán L M. Towards low-cost flexible substrates for nanoplasmonic sensing[J]. Physical Chemistry Chemical Physics, 15, 5288-5300(2013).

         Polavarapu L. Liz-Marzán L M. Towards low-cost flexible substrates for nanoplasmonic sensing[J]. Physical Chemistry Chemical Physics, 15, 5288-5300(2013).

    [42] Zeng Z, Liu Y Y, Wei J J. Recent advances in surface-enhanced Raman spectroscopy (SERS): finite-difference time-domain (FDTD) method for SERS and sensing applications[J]. TrAC Trends in Analytical Chemistry, 75, 162-173(2016). http://www.sciencedirect.com/science/article/pii/S0165993615002496

         Zeng Z, Liu Y Y, Wei J J. Recent advances in surface-enhanced Raman spectroscopy (SERS): finite-difference time-domain (FDTD) method for SERS and sensing applications[J]. TrAC Trends in Analytical Chemistry, 75, 162-173(2016). http://www.sciencedirect.com/science/article/pii/S0165993615002496

    [43] Tira C, Tira D, Simon T et al. Finite-difference time-domain (FDTD) design of gold nanoparticle chains with specific surface plasmon resonance[J]. Journal of Molecular Structure, 1072, 137-143(2014). http://www.sciencedirect.com/science/article/pii/S0022286014004530

         Tira C, Tira D, Simon T et al. Finite-difference time-domain (FDTD) design of gold nanoparticle chains with specific surface plasmon resonance[J]. Journal of Molecular Structure, 1072, 137-143(2014). http://www.sciencedirect.com/science/article/pii/S0022286014004530

    [44] Johnson P B, Christy R W. Optical constants of the noble metals[J]. Physical Review B, 6, 4370-4379(1972). http://www.tandfonline.com/servlet/linkout?suffix=CIT0019&dbid=16&doi=10.1080%2F09205071.2017.1404940&key=10.1103%2FPhysRevB.6.4370

         Johnson P B, Christy R W. Optical constants of the noble metals[J]. Physical Review B, 6, 4370-4379(1972). http://www.tandfonline.com/servlet/linkout?suffix=CIT0019&dbid=16&doi=10.1080%2F09205071.2017.1404940&key=10.1103%2FPhysRevB.6.4370

    [45] Nesterov V, Niziev G, Yakunin P. Generation of high-power radially polarized beam[J]. Journal of Physics D: Applied Physics, 32, 2871-2875(1999). http://spie.org/Publications/Proceedings/Paper/10.1117/12.380954

         Nesterov V, Niziev G, Yakunin P. Generation of high-power radially polarized beam[J]. Journal of Physics D: Applied Physics, 32, 2871-2875(1999). http://spie.org/Publications/Proceedings/Paper/10.1117/12.380954

    [46] Jiao J Q, Wang X, Wackenhut F et al. Polarization-dependent SERS at differently oriented single gold nanorods[J]. ChemPhysChem, 13, 952-958(2012). http://www.ncbi.nlm.nih.gov/pubmed/22378600

         Jiao J Q, Wang X, Wackenhut F et al. Polarization-dependent SERS at differently oriented single gold nanorods[J]. ChemPhysChem, 13, 952-958(2012). http://www.ncbi.nlm.nih.gov/pubmed/22378600

    [47] Cui X X, Chen J, Yang Z H et al. Research progress on radially polarized beam[J]. Laser Journal, 30, 7-10(2009).

         Cui X X, Chen J, Yang Z H et al. Research progress on radially polarized beam[J]. Laser Journal, 30, 7-10(2009).

    [48] Fan W, Lee Y H, Pedireddy S et al. Graphene oxide and shape-controlled silver nanoparticle hybrids for ultrasensitive single-particle surface-enhanced Raman scattering (SERS) sensing[J]. Nanoscale, 6, 4843-4851(2014). http://www.tandfonline.com/servlet/linkout?suffix=CIT0013&dbid=16&doi=10.1080%2F00032719.2017.1392971&key=10.1039%2FC3NR06316J

         Fan W, Lee Y H, Pedireddy S et al. Graphene oxide and shape-controlled silver nanoparticle hybrids for ultrasensitive single-particle surface-enhanced Raman scattering (SERS) sensing[J]. Nanoscale, 6, 4843-4851(2014). http://www.tandfonline.com/servlet/linkout?suffix=CIT0013&dbid=16&doi=10.1080%2F00032719.2017.1392971&key=10.1039%2FC3NR06316J

    [49] Hao R, Zhang C J, Lu Y et al. Preparation and surface-enhanced Raman scattering effect of graphene oxide/(Au/Ag) hybrid materials[J]. Progress in Chemistry, 28, 1186-1195(2016).

         Hao R, Zhang C J, Lu Y et al. Preparation and surface-enhanced Raman scattering effect of graphene oxide/(Au/Ag) hybrid materials[J]. Progress in Chemistry, 28, 1186-1195(2016).

    [50] Aroca R[J]. Rodriguez-Llorente S. Surface-enhanced vibrational spectroscopy. Journal of Molecular Structure, 408/409, 17-22(1997).

         Aroca R[J]. Rodriguez-Llorente S. Surface-enhanced vibrational spectroscopy. Journal of Molecular Structure, 408/409, 17-22(1997).

    [51] Xu W H. Preparation and properties graphene oxide/phenol formaldehyde resin in-situ composition[D]. Guilin: Guilin University of Technology, 26(2013).

         Xu W H. Preparation and properties graphene oxide/phenol formaldehyde resin in-situ composition[D]. Guilin: Guilin University of Technology, 26(2013).

    [52] Gong T C, Zhu Y, Zhang J et al. Study on surface-enhanced Raman scattering substrates structured with hybrid Ag nanoparticles and few-layer graphene[J]. Carbon, 87, 385-394(2015). http://www.sciencedirect.com/science/article/pii/S0008622315001530

         Gong T C, Zhu Y, Zhang J et al. Study on surface-enhanced Raman scattering substrates structured with hybrid Ag nanoparticles and few-layer graphene[J]. Carbon, 87, 385-394(2015). http://www.sciencedirect.com/science/article/pii/S0008622315001530

    [53] Cai W B, Ren B, Li X Q et al. Investigation of surface-enhanced Raman scattering from platinum electrodes using a confocal Raman microscope: dependence of surface roughening pretreatment[J]. Surface Science, 406, 9-22(1998). http://www.sciencedirect.com/science/article/pii/S0039602897010303

         Cai W B, Ren B, Li X Q et al. Investigation of surface-enhanced Raman scattering from platinum electrodes using a confocal Raman microscope: dependence of surface roughening pretreatment[J]. Surface Science, 406, 9-22(1998). http://www.sciencedirect.com/science/article/pii/S0039602897010303

    [54] Le Ru E C, Blackie E, Meyer M et al. . Surface enhanced Raman scattering enhancement factors: a comprehensive study[J]. The Journal of Physical Chemistry C, 111, 13794-13803(2007). http://pubs.acs.org/doi/pdf/10.1021/jp0687908

         Le Ru E C, Blackie E, Meyer M et al. . Surface enhanced Raman scattering enhancement factors: a comprehensive study[J]. The Journal of Physical Chemistry C, 111, 13794-13803(2007). http://pubs.acs.org/doi/pdf/10.1021/jp0687908

    Dong Yang, Zhongquan Nie, Aiping Zhai, Yanting Tian, Baohua Jia. Surface-Enhanced Raman Scattering Performances of GO/AuNRs Composite Substrates Excited by Radially Polarized Light[J]. Acta Optica Sinica, 2019, 39(6): 0630003
    Download Citation